Tinkering with Twitter’s APIFrequency Analysis and Lexical DiversityWhat are people talking about right now?Extracting relationships from the tweetsVisualizing Tweet GraphsSynthesis: Visualizing Retweets with Protovis
2010年11月03日 Web上の膨大な画像に基づく自動カラリゼーション Tweet 以前『Web上の膨大な画像に基づく自動画像補完技術の威力』において、Web上の膨大な画像から欠損部分を自動的に補完する手法*1について紹介した(図1)。 図1:Scene Completion Using Millions of Photographs これは、Flickr等から大量にかき集めてきた画像から類似度の高い画像を自動的に抽出し、欠損部分にハメ込むことで違和感の無い補完画像を生成するアプローチであり、そのアイデアと、生成される補完画像のクオリティが話題になった。素材の量が質に変化する、まさにWeb時代に適したアプローチである。 本エントリでは同様の手法を用いて、失われた色を取り戻すカラリゼーション(colorization)について紹介したい。カラリゼーションとはコンピュータを用いたモノクロ画像
“アルゴリズム”は、もっとも非人間的なものの代表だともいえる。ソーシャルメディアにとって、そのアルゴリズムが不可欠だというのは、実に皮肉めいている。 僕はこの間、グーグルがどうやってユーザーデータを集めているかについて書いた記事を掲載した(前編、後編)。今回は、著名なソーシャルメディアサイトが、ユーザーデータを活用する上でどのようにアルゴリズムを用いているのか、白日の下にさらそう。 ソーシャルメディアを成り立たせているのは人間の力だが、ユーザーが入力したデータを利用できる状態にする仕組みは、アルゴリズムによって作られている。現在活動している無数のソーシャルメディアサイトで実証済みのことだが、ユーザーの関与とアルゴリズムによる処理ルールの上手いバランスを見出すことは、とても難しくなりがちだ。これから紹介するアルゴリズムは、悪意のないユーザーと結びついて初めてうまくいくものだ。 人気ソーシャル
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く