1日目の発表を終えました。資料を公開します。 Perlで圧縮View more presentations from Naoya Ito. 発表の方は少し駆け足になってしまいました。明日ははてなブックマークのシステム事例の話をしたいと思います。 発表の様子 via: http://yapcasia2009.ficia.com/
練習がてら、圧縮符号化の手法のひとつである Range Coder を Perl で実装してみました。 http://github.com/naoya/perl-algorithm-rangecoder/tree/master Range Coder は算術符号を実数ではなく整数で実現した手法です。高速な算術圧縮を実現する「Range Coder」 (1/2):CodeZine(コードジン) に詳しい解説があります。今回の実装も、この記事にあるソースコードを参考に実装しました。参考、というか結局ほとんど移植に近くなってしまいました。 インタフェースは以下のようになっています。入力文字列における各記号の出現頻度、累積出現頻度をあらかじめ算出して RangeCoder オブジェクトにセットしてから、encode することで圧縮結果が得られます。(出現頻度表をバイナリに添加する実装は行っていませ
圧縮アルゴリズムにおける適応型算術符号の実装では、累積頻度表を効率的に更新できるデータ構造が必要になります。もともと算術符号を実装するには累積頻度表が必要なのですが、これが適応型になると、記号列を先頭から符号化しながら、すでに見た記号の累積頻度を更新していく必要があるためです。 累積度数表をナイーブに実装すると、更新には O(n) かかってしまいます。配列で表を持っていた場合、適当な要素の頻度に更新がかかるとその要素よりも前の要素すべてを更新する必要があります。適応型算術符号のように記号を符号化する度に更新がかかるケースには向いていません。 Binary Indexed Tree (BIT, P.Fenwick 氏の名前を取って Fenwick Tree と呼ばれることもあるようです) を使うと、累積頻度表を更新 O(lg n)、参照 O(lg n) で実現することができます。BIT は更
先日言及した Burrows Wheeler Transform (id:naoya:20081016:1224173077) による変換後のテキストは圧縮に使えたり、全文索引に利用できたりと応用範囲は広いです。 BWT により変換したテキストを圧縮するには、そのまま圧縮するのではなく先頭移動法 (Move-To-Front http://ja.wikipedia.org/wiki/Move_To_Front) を適用することでより情報に偏りを持たせてから圧縮するのがセオリーです。 今日は先頭移動法の Perl 実装を作ってみました。Algoritm::MTF です。 http://github.com/naoya/perl-algorithm-mtf/tree/master に置いています。 use Algorithm::MTF; my $encoder = Algorithm::MTF
先日 Array::Gap という Variable Byte Codes による整列済み整数の圧縮の実装を作りました。(id:naoya:20080906:1220685978) 今日は Front Coding を使った同じような圧縮リストクラス、List::FrontCode を作ってみました。Front Coding は辞書式順に整列済みの文字列リストなどを圧縮する手法です。WEB+DB PRESS Vol.42 のアルゴリズム&データ構造の記事で PFI の岡野原さんによる解説があったので、それを参考に実装しました。 Front Coding Front Coding は http://www.hoge.jp http://www.hoge.jp/a.htm http://www.hoge.jp/index.htm http://www.fuga.com/ http://www.
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く