要点 T5(Text-To-Text Transfer Transformer、論文、日本語解説記事)の日本語モデル(事前学習済みモデル)を作り、公開しました。ご活用ください。 T5とは、様々な自然言語処理タスクの入出力がともにテキストになるよう問題形式を再定義することにより、一つの事前学習済みモデルを多様なタスク用に転移学習させることができる高い柔軟性を持ち、かつ、性能も優れている深層ニューラルネットワークです。 転移学習の例: 文章分類、文章要約、質問応答、対話応答、機械翻訳、含意関係認識、文の類似度計算、文法的妥当性判定、タイトル生成、スタイル変換、誤字修正、検索結果のリランキングなど(固有表現抽出などのシーケンスラベリングの実施例はない?) 日本語T5モデルはHugging Face Model Hubからダウンロードできます。 ベンチマークとして、ある分類問題について、既存のmT