2024年度 人工知能学会全国大会(第38回)チュートリアル講演1 本講演では、大規模言語モデルの開発に必要な基礎および最新動向を概観する。その後、東京工業大学情報理工学院の岡崎…
最近はAIエンジニアを名乗ってるerukitiです。フロントエンドもバックエンドも、LLMを触るあれこれもやってるので、「AIエンジニア」くらいを名乗るとちょうどよさそうだなと思ってます。いずれLLM自体の開発なんかもやってるかもしれません。 LLMプロダクトを開発していると、構造化データを作りたいのに、Anthropic ClaudeのAPIにはJSONモードが無いことや、なんならJSONモードやfunction callingを使っても、データが正しい形式に従ってることは保証しがたい、みたいな自体に遭遇することがあります。 JSONが出力できたとしても、構造化データをうまく吐き出させるのは難しいものです。文字列を出力させたいけど、複数あるときは、配列なのか、それともカンマ区切りなのか?項目がオプショナルの場合はどうするか?項目が存在しない、空文字や 0 や undefined や nu
はじめに 科学分野の5択問題を解くLLMの精度を競うKaggle - LLM Science Exam というkaggleコンペが2023/10/11まで開催されていました。 コンペ終了後に公開された上位チームの解法からたくさん学びがあったので、備忘録も兼ねてまとめていきたいと思います。 コンペ概要 問題文(prompt)とA~Eの選択肢(option)が与えられ、それを解くモデルの精度を競うコンペでした。 テストデータはSTEM分野のWikipedia記事からGPT3.5に作成させたことがDataタブで明言されていました。 上位チーム解法まとめ 1. Approach 全てのチームが、問題の生成元となった記事をwikiテキストデータセットから検索(Retrieval)し、関連するテキスト(context)もモデルに入力するRAGと呼ばれるアプローチを採用していました。 RAGを行わないと
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く