タグ

pythonとnumpyに関するyu4uのブックマーク (8)

  • numpy-100/100 Numpy exercises.md at master · rougier/numpy-100 · GitHub

    100 numpy exercises This is a collection of exercises that have been collected in the numpy mailing list, on stack overflow and in the numpy documentation. The goal of this collection is to offer a quick reference for both old and new users but also to provide a set of exercises for those who teach. If you find an error or think you've a better way to solve some of them, feel free to open an issue

    numpy-100/100 Numpy exercises.md at master · rougier/numpy-100 · GitHub
  • C++でpythonを拡張する(Boost.NumPy) - Qiita

    何故C++のクラス・関数をPythonにバインドするか? C++11は非常に便利になった。Boost使えばさらに便利だ。 しかし、pythonはもっと使いやすい。 NumPyをベースにしたプロジェクト群(SciPy, matplotlib, pandas, ...) は共通の基盤の上に非常に使い易く整備されている上に、そこそこ高速に動作する。 C++を使うべきか、Pythonにバインドして使うべきか、 また私の中で結論はでていないが、とりあえずバインドするための情報をまとめる。 どうやってバインドするか? 問題は2つある。 単純にPythonにバインドする方法 NumPyにバインドする方法 Pythonを使う理由の一つにNumPyのベースのライブラリを使用する事があるので、 NumPyのndarray等に変換できる必要がある。 基となるのはPython C APIとNumPy C API

    C++でpythonを拡張する(Boost.NumPy) - Qiita
  • pylearnの環境設定・実行 (ついでにscikit_learn設定 - mikemoke blog

    scikit_learn は numpyとscipyに依存しており、 pyleranは上記に加えてTheano,PyYAML,PIL(Image?)をインストールする pythonについては過去記事で設定している前提で (http://mikemoke.hatenablog.com/entry/2014/03/02/203524) ・numpyインストール numpyインストールしようとするもvcvarsall.bat見つからないとエラー ⇒.Net4.x は python 2.xが求めるvcvarsallが無いとか。(python3.x向けはある) 以下参照してWindows SDKをインストール& python2.x用vcvarsall.batを用意 http://draftcode.github.io/2013/03/17/5f45fabb-8b64-469e-a0f6-7f9d76

    pylearnの環境設定・実行 (ついでにscikit_learn設定 - mikemoke blog
  • 高次元データの次元削減および2次元プロット手法 - Qiita

    はじめに 記事はPython2.7, numpy 1.11, scipy 0.17, scikit-learn 0.18, matplotlib 1.5, seaborn 0.7, pandas 0.17を使用しています. jupyter notebook上で動作確認済みです.(%matplotlib inlineは適当に修正してください) SklearnのManifold learningの記事を参考にしています. 多様体学習と言われる手法について,sklearnのdigitsサンプルを用いて説明します. 特にt-SNEはKaggleなどでもたまに使用されている,多次元データの可視化に適した手法です. また可視化だけでなく,元のデータと圧縮されたデータを結合することで,単純な分類問題の精度を向上することができます. 目次 データの生成 線形要素に注目した次元削減 Random Proj

    高次元データの次元削減および2次元プロット手法 - Qiita
  • 高速数値計算ライブラリ「Numpy」覚書き - Pashango’s Blog

    Pythonで一番有名で普及しているライブラリと言っても過言ではない「Numpy」の覚書きです。かなり多機能な数値計算ライブラリで、内部はC言語で記述されているため超高速に動作します。 ベクトル ベクトルの長さ&正規化 import numpy a = numpy.array([[2,2]]) #ベクトルの長さ length = numpy.linalg.norm(a) #length=>2.8284271247461903 #ベクトルの正規化 a / numpy.linalg.norm(a) #=>array([[ 0.70710678, 0.70710678]]) 内積&外積 import numpy v1 = numpy.array((1,0,0)) v2 = numpy.array((0,1,0)) #内積 numpy.dot(v1,v2) #=> 0 #外積 numpy.cros

    高速数値計算ライブラリ「Numpy」覚書き - Pashango’s Blog
  • 第2回 Tokyo.SciPy で「数式を numpy に落としこむコツ」を発表してきました - 木曜不足

    10/15 に IBM さんの渋谷オフィスにて開催された 第2回 Tokyo.SciPy にのこのこ参加してきました。主催の @sla さんはじめ、参加者・発表者各位おつかれさまでした&ありがとうございました。 せっかく行くならなんか発表したいよね、ということで「数式を numpy に落としこむコツ 〜機械学習を題材に〜」なんてタイトルで、数式(あるいは数式入りのアルゴリズム)を実装するときに、どういう点に注目すれば易しくコードを書けるか、についてちらちら語ってみた。 こちらがその資料。 数式をnumpyに落としこむコツ View more presentations from Shuyo Nakatani 例えば、機械学習の(多クラス)ロジスティック回帰という技術では、次のような数式が登場する。 (PRML (4.109) 式) これを一目見てすらすらとコードが書けるなら苦労はないが、慣

    第2回 Tokyo.SciPy で「数式を numpy に落としこむコツ」を発表してきました - 木曜不足
  • python/numpy - 機械学習の「朱鷺の杜Wiki」

    パッケージ† pip や easy_install によるインストールの前に多くの外部ライブラリやfortranコンパイラなどが必要になるので,numpy等の科学技術計算パッケージをインストールするには以下のようなパッケージを一般には利用する: 商用(サポートなしなら無料でも利用できる) Anaconda:無料版でもIntel MKLが使える Enthought Canopy フリー Unofficial Windows Binaries for Python Extension Packages (個人ベースの管理で非公式版) ↑ その他† pyvideo.org:PyCon, SciPy, PyData などの講演ビデオリンク集 100 numpy exercises:練習問題 Pythonidae:Python関連のライブラリのリンク集 SciPy Central:SciPy 関連コ

  • Pythonでカルマンフィルタを実装してみる

    カルマンフィルタは、時間変化するシステムの、誤差のある離散的な観測から現在の状態を推定する手法。Wikipediaの記事(カルマンフィルター)がわかりやすい。 状態方程式と観測方程式が次のように与えられているとき (状態方程式) (観測方程式) (ノイズ) (フィルタ分布)線形カルマンフィルタ(LKF; Linear Kalman Filter)は μt, Σt, ut, yt+1 を入力として、 μt+1, Σt+1を出力する。1ステップのプロセスは以下のとおり。 # prediction (現在の推定値) (現在の誤差行列)# update (観測残差) (観測残差の共分散) (最適カルマンゲイン) (更新された現在の推定値) (更新された現在の誤差行列)観測を得るごとにPredictionとUpdateを繰り返すことで、現在の状態を推定します。 導出は後述(予定)。 例題を。 2次元

  • 1