エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント1件
- 注目コメント
- 新着コメント
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
微分係数は接線の傾き、では全微分は? - Phys and Tips
はじめに 1 変数関数 $f (x)$ の微分 $\indiff{f}{x}$ の意味は? と聞かれたら、だいたいの人は「そり... はじめに 1 変数関数 $f (x)$ の微分 $\indiff{f}{x}$ の意味は? と聞かれたら、だいたいの人は「そりゃ、 $f(x)$ の接線の傾きでしょ」と答えられると思う*1。では、 2 変数関数 $g(x, y)$ の全微分 (total derivative) \[ dg = \pdiff{g}{x} dx + \pdiff{g}{y} dy \]の意味は? と聞かれたときに、シンプルに答えられる人はどれくらいいるだろうか? この記事では、偏微分の理解を前提としてこの問に対するシンプルな答えを考えていく。 1 変数関数の「全微分」は直線の式である ……と言いながら、まずは 1 変数関数の話からしていこう。なぜなら、 1 変数関数のときに考えたことが 2 変数関数のときに役立つからだ。別の言い方をすると、 2 変数関数がわからないという場合、 1 変数関数から 2 変数関数
2017/12/29 リンク