エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
ディープラーニングにGPUではなくCPUを利用、コスト節約型のアルゴリズム「SLIDE」! | Techable(テッカブル)
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
ディープラーニングにGPUではなくCPUを利用、コスト節約型のアルゴリズム「SLIDE」! | Techable(テッカブル)
ディープラーニングでの、データとニューラルネットワークが大規模化していくにしたがって、トレーニン... ディープラーニングでの、データとニューラルネットワークが大規模化していくにしたがって、トレーニングで利用するハードウェアにはスペックの高いものが求められる。 モデルのトレーニングに特化したGPUの利用がベストだとしても、そのコストがボトルネックになることがあるだろう。 こうしたなか、ライス大学の研究者が汎用的なCPUでも高速なトレーニングが可能なことを示した。研究者が開発したアルゴリズム「SLIDE(Sub-LInear Deep learning Engine)」は、従来のフレームワークとは全く別のアプローチでのトレーニングを実行する。 ・GPUによるトレーニングの3.5倍速を実現GPUは、CPUと比べて多くのコアを搭載可能。その演算処理性能の高さから、ディープラーニングにとってなくてはならない存在だ。 AIの進化はGPUの進化とともにあるといっても過言ではなく、なかでもNVIDIA V