kaggleパッケージをインストールして、VS Codeの統合ターミナルからKaggle APIにkaggleコマンド を使ってアクセスし、ローカル環境でKaggleノートブックを実行してみましょう。

kaggleパッケージをインストールして、VS Codeの統合ターミナルからKaggle APIにkaggleコマンド を使ってアクセスし、ローカル環境でKaggleノートブックを実行してみましょう。
これはなに? Kaggleのテーブルデータコンペに参加するときに役立つ(と思う)Tipsを Kaggle Coursera の授業メモに色々追記する形でまとめたものです 自分で理解できている内容を中心にまとめました。各種資料の内容はまだまだ理解できていない内容が多く、今後も随時更新していきます(随時更新できるように勉強します)。 この記事に書いてあるTipsをどのように活かしたかはKaggle参戦記に書いたので、併せてどうぞ。 参考文献 主として以下の資料の内容をピックアップさせていただきました。引用を明記していない部分は(ほぼ100%) Kaggle Coursera の内容です。 Kaggle Coursera kaggle_memo by nejumiさん Kaggleで世界11位になったデータ解析手法〜Sansan高際睦起の模範コードに学ぶ Kaggle TalkingData F
東京大学 松尾研究室が主催する深層強化学習サマースクールの講義で今井が使用した資料の公開版です. 強化学習の基礎的な概念や理論から最新の深層強化学習アルゴリズムまで解説しています.巻末には強化学習を勉強するにあたって有用な他資料への案内も載せました. 主に以下のような強化学習の概念やアルゴリズムの紹介をしています. ・マルコフ決定過程 ・ベルマン方程式 ・モデルフリー強化学習 ・モデルベース強化学習 ・TD学習 ・Q学習 ・SARSA ・適格度トレース ・関数近似 ・方策勾配法 ・方策勾配定理 ・DPG ・DDPG ・TRPO ・PPO ・SAC ・Actor-Critic ・DQN(Deep Q-Network) ・経験再生 ・Double DQN ・Prioritized Experience Replay ・Dueling Network ・Categorical DQN ・Nois
連載目次 こんにちは、初心者Kagglerの一色です。また、この連載の記事を開いてくれてありがとうございます! 前回は「Kaggle初心者のためのコンペガイド ― Titanicの先へ:僕たちのKaggle挑戦記」という記事を公開して、ブックマーク数は少なかったものの、そこそこのページ参照数が得られました。ドキドキしながらの記事公開でしたが少し安心しました。これを受けて、自分もそうだったのですが、「取りあえずTitanicコンペでSubmission(提出)まではやったけど、次のコンペティション(本稿ではコンペと表記)になかなか取り組めない」という人が少なくないということなのかなと思いました。 壁「Titanicの次」を突き破る! オススメの方法 筆者はどうやって「Titanicの次」という壁を突き破れたのか。そのきっかけになったのが、前回の記事で「Kaggleを始めるのに役に立ったこと」
Kaggleでは、賞金をもらえる順位に入ると、winner callというコンペの主催者と電話をする必要があります。 また、賞金をもらうために、個人は「W-8BEN」、法人は「W-8BEN-E」という書類の提出が必要であり、法人の場合は米国の納税者番号(Employer Identification Number, EIN)をドキュメントに記載する必要があります。 私は、kaggleの地震コンペで3位になりましたで書いたように、「LANL Earthquake Prediction(以下地震コンペ)」というKaggleのコンペで3位になり、Winners callと米国の納税者番号の取得をして賞金をもらいました。 以下では自分の体験を記載します。 (注)以下の内容は、今回のコンペにしか合致しないものとか、私が勘違いしているものとかあるかもしれませんので、だいたいの流れとしてご理解ください。
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く