タグ

algorithmとmixiに関するyokochieのブックマーク (4)

  • Tokyo TyrantとテーブルDBでリアルタイム検索 - mixi engineer blog

    ドラクエは卒業して、もっと英語漬けをやっているmikioです。さて今回は、データベースサーバTokyo Tyrantとテーブルデータベースを使ってリアルタイム検索システムを構築する方法について語ります。 テーブルDBを分散させたい Tokyo TyrantでもテーブルDBがサポートされているわけですが、これはリアルタイム検索システムへの布石です。テーブルDBは任意のコラムにインデックスを張ることができ、時系列のコラムにインデックスを張ればその値によって古いコラムを効率的に消すことができます。チュートリアルの「Persistent but Expirable Cache」でもその方法を示しています。また、任意のコラムに分かち書きトークン方式もしくは文字N-gram方式で転置インデックスを張ることができます。これらを総合すると、最新のデータのみを保持してサイズと性能を一定に保ったインデックスを

    Tokyo TyrantとテーブルDBでリアルタイム検索 - mixi engineer blog
  • 軽量データクラスタリングツールbayon - mixi engineer blog

    逆転検事を先日クリアして、久しぶりに逆転裁判1〜3をやり直そうか迷い中のfujisawaです。シンプルなデータクラスタリングツールを作成しましたので、そのご紹介をさせていただきます。 クラスタリングとは クラスタリングとは、対象のデータ集合中で似ているもの同士をまとめて、いくつかのグループにデータ集合を分割することです。データマイニングや統計分析などでよく利用され、データ集合の傾向を調べたいときなどに役に立ちます。 例えば下図の例ですと、当初はデータがゴチャゴチャと混ざっていてよく分からなかったのですが、クラスタリングすることで、実際は3つのグループのデータのみから構成されていることが分かります。 様々なクラスタリング手法がこれまでに提案されていますが、有名なところではK-means法などが挙げられます。ここでは詳細については触れませんが、クラスタリングについてより詳しく知りたい方は以下の

    軽量データクラスタリングツールbayon - mixi engineer blog
  • 各種マップ実装の性能比較 - mixi engineer blog

    今回は小ネタのmikioです。key/valueのレコードを高速に格納・参照・削除する仕組みが連想配列とかマップとか呼ばれて親しまれていますが、Tokyo Cabinetのオンメモリマップの性能をC++の各種実装と比較してみました。 以下の実装を対象として、100万レコードの格納と検索にかかる時間を計測します。キーと値は各8バイトの文字列とします。 Tokyo Cabientのオンメモリマップ(TCMAP) STL(C++の標準テンプレートライブラリ)のmapとmulti mapとset GNU拡張テンプレートのハッシュマップ Googleのdense hashおよびsparse hash テストコードはこちらに挙げておきます。具体的な操作としては、マップオブジェクトを生成し、バケット配列の要素数をレコード数と同じにチューニングし、ループを回してレコード群を格納します。なお、STLのマップ

    各種マップ実装の性能比較 - mixi engineer blog
  • mixi Engineers’ Blog » スマートな分散で快適キャッシュライフ

    今日は以前のエントリーで書くと述べたConsistent Hashingに関して語らせて頂こうかと思います。ただしConsistent Hashingはセミナーやカンファレンスなどでかなり語られていると思いますので、コンセプトに関しては深入りせず、実用性に着目したいと思います。 問題定義 分散されたキャッシュ環境において、典型的なレコードを適切なノードに格納するソリューションはkeyのハッシュ値に対しmodulo演算を行い、その結果を基にノードを選出する事です。ただし、このソリューションはいうまでもなく、ノード数が変わるとキャッシュミスの嵐が生じます。つまり実世界のソリューションとしては力不足です。 ウェブサイトのキャッシュシステムの基はキャッシュがヒットしなかったらデータベースにリクエストを発行し、レコードが存在したらキャッシュしてクライエントに返すという流れです。ここで問題なのが一瞬

    mixi Engineers’ Blog » スマートな分散で快適キャッシュライフ
  • 1