タグ

ブックマーク / learning.ikeay.net (3)

  • 機械学習の種類: 教師あり学習編 - learning.ikeay.net

    こんにちは、@ikeayです。 機械学習にもいろいろなモデル(アルゴリズム)があります。これらのモデルは優劣だけではなく、得意分野・不得意分野があったりするので、解きたい問題に応じて最適なものを選びます。 scikit-learnより どういう時にどういうモデルを使えばいいか、scikit-learnが用意しているチャートを参考にすると分かりやすいですね。 機械学習はまずは大きく、「教師あり学習」「教師なし学習」「強化学習」に分けられます。ざっくり説明すると、「教師あり学習」は問題と答えがセットになって学習する方法、「教師なし学習」は正解不正解のデータが入っていないので、クラスタリングや外れ値検出で傾向をつかむ学習方法、「強化学習」はいいことをしたら報酬を与えていく学習方法です。以下の記事にざっくりとまとめてあります。 learning.ikeay.net 今回はその中でも教師あり学習のモ

    機械学習の種類: 教師あり学習編 - learning.ikeay.net
  • 機械学習のためのPythonの基礎「NumPy」を学ぶ - learning.ikeay.net

    機械学習といえば「Python」です。なぜPythonなのかというと、数値演算や機械学習に関するライブラリがたくさん揃っているからだそう。行列がとても扱いやすいNumPy、グラフ描画が簡単にできるmatplotlib、機械学習のscikit-learnなどなど… 機械学習ではこの3つのライブラリを大いに活用します。 まずは今回はscikit-learnを使った機械学習ではかなり重要になってくる「NumPy」を学びます。 私はPythonもはじめてなのでまずはPythonの概要を把握しつつ、「100 numpy exercises」というNumPyを基礎から学べる問題集を写経して学習したいと思います。 環境構築 まずは環境構築です。詳しくは下記のリンクに飛んで確認いただきたいのですが、Macの場合は、Pythonのバージョン管理システムである「pyenv」と、分析環境を構築するのに便利な「A

    機械学習のためのPythonの基礎「NumPy」を学ぶ - learning.ikeay.net
  • 機械学習の基礎知識としての数学 - learning.ikeay.net

    私がAI人工知能)や機械学習って難しいナーと感じるところは、数学の前提知識がある程度必要なところです。 GoogleからTensorflowが出たときに、私もいっちょやってみるかなんて思ったのですが、参考にした記事もなかなか難しくてあんまり理解できなかったのを覚えてます。途中まで理解出来てたのに、急に数式が出てきて「なるほどわからん!」ってなることが多かったですね。 「というかエンジニアなのに数学苦手なのw」とビックリされる方もいらっしゃると思いますが、エンジニアっつったって、今の御時世理系出身エンジニアばかりじゃないんです。でもエンジニア女子やってると自動でリケジョ扱いされるから面白いですね。 当面の目標としては、AIの中でも機械学習を学んでいきたいので(DeepLearningできるようになりたい!)、あると嬉しい数学の知識としては以下です。 線形代数 確率・統計 微分・積分 AI

    機械学習の基礎知識としての数学 - learning.ikeay.net
  • 1