エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
seabornによる統計データ可視化(ポケモン種族値を例に)(1) - 午睡二時四十分
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
seabornによる統計データ可視化(ポケモン種族値を例に)(1) - 午睡二時四十分
データの可視化をまとめて学んでおこうと思って書きました。 はじめに データ分析はデータの可視化から ... データの可視化をまとめて学んでおこうと思って書きました。 はじめに データ分析はデータの可視化から 機械学習や統計分析をするに当たって、データの可視化は 対象のデータに対して洞察を深める 処理の結果を評価する 成果を分かりやすく他人に説明する など、様々な局面で重要になります。 KaggleのKenel (分析/処理の過程をまとめたもの) をみても対象のデータに対する洞察を行う過程が全体の半分以上を占めていることが少なくありません。データを正しく可視化することは、データ分析や機械学習全般の土台にあたる作業です。 今回は、データの統計的可視化でよく使われるライブラリ "Seaborn" を用いてよく使う可視化パターンについてまとめてみます。 環境とデータ 実行環境にはKaglleのKernelを使いますが、オープンソースライブラリJupyterを使えばほぼおなじことが可能です。 また、ちょう