タグ

graphとnetworkに関するhiromarkのブックマーク (3)

  • Python でグラフ・(疎)行列計算するためのライブラリを紹介するよ - 武蔵野日記

    PageRank とか HITS といったリンク解析ではグラフの計算が頻発するのだが、Python でそのあたり書くときの話をまとめてみる。グラフは行列で表現できる(ノード×ノード次元の行列 A を考えて、ノード i からノード j にエッジがあるとき、A[i,j] に値を入れておけばよい。無向グラフのときは A[i,j] = A[j,i] なので対称行列になる)ので、要は行列を手軽に扱えるライブラリの紹介である。 実は Python の行列演算ライブラリはどれも lapack/blas を内部的に呼んでいるので、C/C++ 等と比較してもそんなに遅くない。それどころか、自動的に並列化できるところは並列化してくれたりするので、まれに C より速いこともあるらしい。特に巨大なグラフを作る場合、ほとんどの処理は C などで書かれた関数に飛ぶので、速度的な問題は無視してもいいくらいである(逆に、

    Python でグラフ・(疎)行列計算するためのライブラリを紹介するよ - 武蔵野日記
  • Link Analysis and Related Topics - Home

    2008年度 先端情報科学特論 II & IV リンク解析と周辺の話題 担当 新保 仁 shimbo@is.naist.jp 日時 2008/11/10, 11/17, 12/1, 12/8 (全 4 回) - 4限 15:10-16:40 場所 情報棟 L3 講義室 リンク解析は, グラフ (ネットワーク) データの構造から有用な情報を抽出するための, データマイニングの一研究分野です. この講義ではまず, リンク解析が取り扱う 2 種類の尺度 (重要度と関連度) について述べ, それぞれの代表的な計算手法を紹介します. 後半では, 近年機械学習分野で盛んに研究されているカーネルのうち, グラフ上の節点に対して定義されたカーネル (グラフカーネル) と, そのリンク解析への応用について紹介します. 第1回 11月10日 スライド 第2回 11月17日 スライド 第3回 12月1日

    hiromark
    hiromark 2009/01/26
    あとでじっくり読む。
  • NAIST マニアック講義録: リンク解析と周辺の話題 - 武蔵野日記

    紹介するのを忘れていたが、NAIST は冬学期になるといろいろとマニアックな講義が開講される。そのうち今年は shimbo さんのリンク解析と周辺の話題を紹介(それぞれに PDF がある)。 リンク解析は, グラフ (ネットワーク) データの構造から有用な情報を抽出するための, データマイニングの一研究分野です. この講義ではまず, リンク解析が取り扱う 2 種類の尺度 (重要度と関連度) について述べ, それぞれの代表的な計算手法を紹介します. 後半では, 近年機械学習分野で盛んに研究されているカーネルのうち, グラフ上の節点に対して定義されたカーネルと, そのリンク解析への応用について紹介します. ということで、いろいろなカーネルについて取り上げており、コンパクトにまとまっているので、このあたりに興味ある人にお薦め。 もう少し書くと、まずリンク解析とはなにか述べ、重要度と関連度について

    NAIST マニアック講義録: リンク解析と周辺の話題 - 武蔵野日記
    hiromark
    hiromark 2009/01/25
    おもしろそうじゃん!
  • 1