タグ

ブックマーク / qiita.com/icoxfog417 (6)

  • ディープラーニングの判断根拠を理解する手法 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? ディープラーニングは特定分野で非常に高い精度が出せることもあり、その応用範囲はどんどん広がっています。 しかし、そんなディープラーニングにも弱点はあります。その中でも大きい問題点が、「何を根拠に判断しているかよくわからない」ということです。 ディープラーニングは、学習の過程でデータ内の特徴それ自体を学習するのが得意という特性があります。これにより「人が特徴を抽出する必要がない」と言われたりもしますが、逆に言えばどんな特徴を抽出するかはネットワーク任せということです。抽出された特徴はその名の通りディープなネットワークの中の重みに潜在してお

    ディープラーニングの判断根拠を理解する手法 - Qiita
    hsato2011
    hsato2011 2018/03/28
    ディープラーニングの判断基準
  • Convolutional Neural Networkを実装する - Qiita

    Deep Learning系のライブラリを試すのが流行っていますが、Exampleを動かすのはいいとしても、いざ実際のケースで使おうとするとうまくいかないことがよくあります。 なんとか動かしてみたけれど精度が出ない、データの加工の仕方が悪いのか、モデルのパラメーターが悪いのか、原因がぜんぜんわからん・・・という事態を乗り越えるには、やはり仕組みに対する理解が必要になってきます。 そんなわけで、編では画像の用意という一番最初のスタートラインから、Chainerで実装したCNNを学習させるところまで、行うべき手順とその理由を解説していきたいと思います。 前段として理論編を書いていますが、ここではライブラリなどで設定しているパラメーターが、理論編の側とどのようにマッチするのかについても見ていきたいと思います。 なお、今回紹介するノウハウは下記リポジトリにまとめています。画像認識を行う際に役立て

    Convolutional Neural Networkを実装する - Qiita
    hsato2011
    hsato2011 2017/12/09
  • ニューラルネットワークで時系列データの予測を行う - Qiita

    Hopfield networkは、一般的なクラス分類以外に最適化問題への応用が可能なモデルです。 Elman/Jordanは、Simple recurrent networksと言われているように一番シンプルな形となっています。RNNを利用したい場合はまずどちらかでやってみて、精度的な問題があるのなら他の手法に切り替えてみる、というのがよいのではないかと思います。 Elman/Jordanの違いは上記のとおりですが(前回データの反映が隠れ層から行われるか、出力層から行われるか)、こちらにも詳しく書かれています。精度的な優劣はありませんが、隠れ層の数によって次に伝播する量を変化させられるElmanの方が柔軟と言えると思います。 Echo state networkは毛色が違ったモデルで、ノードを事前に結合せずReservoir(貯水池などの意味)と呼ばれるプールに貯めておき、入力が与えられ

    ニューラルネットワークで時系列データの予測を行う - Qiita
    hsato2011
    hsato2011 2017/11/27
  • Convolutional Neural Networkとは何なのか - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 機械学習の世界において、画像といえばConvolutional Neural Network(以下CNN)というのは、うどんといえば香川くらい当たり前のこととして認識されています。しかし、そのCNNとは何なのか、という解説は意外と少なかったりします。 そこで、記事ではCNNについてその仕組みとメリットの解説を行っていきたいと思います。 なお、参考文献にも記載の通り解説の内容はStanfordのCNNの講座をベースにしています。こちらの講座はNeural NetworkからCNN、はてはTensorflowによる実装まで解説される予定な

    Convolutional Neural Networkとは何なのか - Qiita
  • Pythonを書き始める前に見るべきTips - Qiita

    Pythonを使ってこの方さまざまな点につまずいたが、ここではそんなトラップを回避して快適なPython Lifeを送っていただくべく、書き始める前に知っておけばよかったというTipsをまとめておく。 Python2系と3系について Pythonには2系と3系があり、3系では後方互換性に影響のある変更が入れられている。つまり、Python3のコードはPython2では動かないことがある(逆もしかり)。 Python3ではPython2における様々な点が改善されており、今から使うなら最新版のPython3で行うのが基だ(下記でも、Python3で改善されるものは明記するようにした)。何より、Python2は2020年1月1日をもってサポートが終了した。よって今からPython2を使う理由はない。未だにPython2を使う者は、小学生にもディスられる。 しかし、世の中にはまだPython3に

    Pythonを書き始める前に見るべきTips - Qiita
  • 画像処理の数式を見て石になった時のための、金の針 - Qiita

    $k$は定数で、だいたい0.04~0.06くらいです。Rの値によって以下のように分類できます。 Rが大きい: corner Rが小さい: flat R < 0: edge 図にすると、以下のようになります。 CSE/EE486 Computer Vision I, Lecture 06, Corner Detection, p22 これで手早くcornerを検出できるようになりました。ここで、corner検出についてまとめておきます。 cornerは複数のedgeが集まる箇所と定義できる 変化量をまとめた行列の固有ベクトルからedgeの向き、固有値の大きさから変化量の大きさ(edgeらしさ)がわかる 2つの固有値の値を基に、edge、corner、flatを判定できる 固有値の計算は手間であるため、判定式を利用し計算を簡略化する なお、Harrisはedgeの向きである固有ベクトルを考慮す

    画像処理の数式を見て石になった時のための、金の針 - Qiita
  • 1