NECは、ビッグデータ分析を高速化する分散処理フレームワーク「Feliss」を開発した(発表資料)。ビッグデータ分析でよく用いられるHadoopは、Map-Reduce型の単純な分析であれば高速に実行できるが、繰り返し演算を多用する機械学習処理では、ジョブ間でストレージを経由してデータをやり取りするHDFSがボトルネックとなり、演算の効率を上げにくい。 そこでNECのFelissでは、ジョブ間のデータのやり取りをインメモリーで実施するようにした。さらに演算ノード間の通信などにおいて、並列処理の際のメッセージパッシングのAPIとして一般的な「MPI」を同時に使えるようにした。これにより、機械学習のような複雑な演算について、通常のHadoopを用いる場合と比べて10倍ほど高速に実行できるようにした。FelissはHDFSのインタフェースを備えており、最初のデータ読み出しはHDFSから行える。