並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 1029件

新着順 人気順

python if int 0の検索結果1 - 40 件 / 1029件

  • ChatGPTのおさらいと、プログラミングに活用するための第一歩 | gihyo.jp

    大量の文章から学習することで、多言語を取り扱う能力だけでなく、高度な推論能力まで手に入れました。 GPT-3.5、とりわけその初期モデルのCodexはGitHubに存在する5400万の公開リポジトリから採取された159GBのPythonコードでGPT-3をfine-tuning(微調整)することで生まれました。ChatGPTがとりわけPythonが得意なのはここから来ています。 ChatGPTの学習データを考えることはその能力を発揮させるときに極めて有効です。質問時も以下のように、『⁠涼宮ハルヒの憂鬱』というライトノベル作品について日本語で聞いたときはSOS団の略称を間違えるなどしますが、英語ではほぼ期待通りの回答を見せます。 図1 『ハルヒの憂鬱』について日本語で聞いた場合の回答 図2 『ハルヒの憂鬱』について英語で聞いた場合の回答 知ったかぶりをするChatGPT ところで、ChatG

      ChatGPTのおさらいと、プログラミングに活用するための第一歩 | gihyo.jp
    • Command Line Interface Guidelines

      Contents Command Line Interface Guidelines An open-source guide to help you write better command-line programs, taking traditional UNIX principles and updating them for the modern day. Authors Aanand Prasad Engineer at Squarespace, co-creator of Docker Compose. @aanandprasad Ben Firshman Co-creator Replicate, co-creator of Docker Compose. @bfirsh Carl Tashian Offroad Engineer at Smallstep, first e

        Command Line Interface Guidelines
      • Value Objectについて整理しよう - Software Transactional Memo

        Value Objectとは何であるか? マーチン・ファウラーのPatterns of Enterprise Application Architecture(PofEAA)やエヴァンス・エリックのDomain Driven Design: Tackling Complexity in the Heart of Software(DDD)が原典であるが、PofEAAではこう切り出している。 When programming, I often find it's useful to represent things as a compound. プログラミング時は物をcompound(合成物)として表現すると便利なことがしばしばある。 例えば2次元空間上での座標のように複数のメンバ(属性)を持つ物は便利である、と。しかしそれらを比較する方法は一意ではない、そこで Objects that a

          Value Objectについて整理しよう - Software Transactional Memo
        • 現役高校生が、AtCoderでレッドコーダーになるまでにやってきたこと。プログラミング上達の秘訣を全て教えます - Findy Engineer Lab

          こんにちは、はじめまして。筑波大学附属駒場高等学校 3 年生(今年 4 月から東京大学に入学予定)の米田優峻(@e869120)と申します。私は競技プログラミング(競プロ)が趣味で、AtCoder・情報オリンピック・パソコン甲子園などの大会に出場しています。2021 年 3 月時点で、AtCoder では赤色(レッドコーダー)です。また、国際情報オリンピックの 2018 年/2019 年/2020 年大会で金メダルを獲得しています。*1 とはいえ、決して簡単にこの記録を手に入れられたわけではありません。何度も挫折と失敗を経験しながら自分のスキルを磨いた結果、競プロを始めてから 3 年後にはレッドコーダーになることができたのです。 今回は「わたしの選択」というテーマで寄稿の機会を頂いたので、私が中学 1 年生の秋に競技プログラミングを始めてからレッドコーダーになるまで、そして国際情報オリンピ

            現役高校生が、AtCoderでレッドコーダーになるまでにやってきたこと。プログラミング上達の秘訣を全て教えます - Findy Engineer Lab
          • Python滅ぼす協会に入会したい

            なぜ令和にもなって動的型付け言語を使うのか シフトレフトという概念が生まれたのは二十年以上も前のはずだ。 それにもかかわらず動かしてみるまで答え合わせもできない言語で開発をするという発想自体がどうかしている。 同じ動的型付けといってもJavaScriptはブラウザという事情があるし、型の表現力に優れたTypeScriptがあるからまだよい。 しかし、Pythonはどうだ。他にいくらでも選択肢があるなかで、サーバーサイドにわざわざ選定する言語ではなかろう。 貧弱な型ヒント、しかも書いたところで大した効用もない。 使っている外部ライブラリにひとつでも型ヒントがクソなものがあれば即座に破綻する。 型というガードレールもシートベルトもなしで糞を撒き散らしながらする開発にはうんざりだ。 シンタックスもキモい 動的型付けもさることながら、シンタックスもキモい。とにかく思考を妨げる語順になっている。 m

              Python滅ぼす協会に入会したい
            • 新入社員のみんな、「ChatGPT×Python」で鬼にならないか?|ピーナッツ

              ChatGPTが本当にヤバい。 断言する。新卒がこれを使いこなせば、今職場で「優秀」とされている5-6年目くらいの先輩なら余裕で出し抜ける。鬼になれる。 筆者はメーカー社員なので、メーカーの新入社員がChatGPTを使って鬼になる方法を1つ提案したい。 「ChatGPT×Python」である。 Pythonとは、ご存知のとおり物理シュミレーションからデータサイエンス、機械学習までカバーする汎用性をそなえたプログラミング言語だ。何でもできるわりには書ける人がなぜか少なく、いまだにスキルとして重宝されている。 そんなPythonにChatGPTを使おう。 ChatGPTを使えば、上司から求められるアウトプットを一瞬で出すことができる。それに対してフィードバックをもらい、それも一瞬で打ち返すことができる。 「あいつ"Python書ける"だけじゃないんだよな。こっちが言ったこと正確に理解するし、そ

                新入社員のみんな、「ChatGPT×Python」で鬼にならないか?|ピーナッツ
              • 退屈なことはPythonにやらせよう 第2版

                一歩先行くハイパフォーマンスなビジネスパーソンからの圧倒的な支持を獲得し、自作RPA本の草分けとして大ヒットしたベストセラー書の改訂版。劇的な「業務効率化」「コスト削減」「生産性向上」を達成するには、単純な繰り返し作業の自動化は必須です。本書ではWordやExcel、PDF文書の一括処理、Webサイトからのダウンロード、メールやSMSの送受信、画像処理、GUI操作といった日常業務でよく直面する面倒で退屈な作業を、Pythonと豊富なモジュールを使って自動化します。今回の改訂では、GmailやGoogleスプレッドシートの操作、Pythonと各種モジュールの最新版への対応、演習等を増補しています。日本語版では、PyInstallerによるEXEファイルの作成方法を巻末付録として収録しました。 関連ファイル サンプルコード 正誤表 書籍発行後に気づいた誤植や更新された情報を掲載しています。お手

                  退屈なことはPythonにやらせよう 第2版
                • 日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)

                  いきなりですが。 海外旅行したり働き始めたりすると、日本の良さが身に染みたと感じた人は多いんじゃないでしょうか? なんかとりあえず外で働いてみたいと思っていましたが、今はいつ戻るかと考える日々です。(とにかく温泉に入りたい) また色々と各国を回る中で、日本企業ってアジア圏や他の国にもかなり進出してるんだなぁと実感しました。(そりゃそう) そんなこんなで日本株に興味を持ち 昨年にわが投資術を購入して実践し始めました。(まだ初めて一年目なので成績はわかりません。。。が、マイナスは無し) 自分でバフェットコードや Claude mcp-yfinance などを利用しながらスクリーニングしてみましたが、毎回決算が出るたびに手動とチャット相手にあるのも何かなぁ。と思いまして。 じゃあ自動収集とスクリーニング用のアプリ作ってみよう(vibe coding) そんなノリから、日本株全銘柄を自動収集・簡易

                    日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)
                  • ほんで、MEGA BIGくじにいくら賭ければいいの?|morio

                    この記事では、MEGA BIGくじの最適な賭け額、最適な賭け額の算出方法について説明する。 ※この記事の内容は間違っている可能性があるので注意してください。間違いがあればご指摘いただけると嬉しいです。できれば専門家にレビューしてほしいです。 ※この記事はMEGA BIGの購入を薦めているわけではありません。 MEGA BIG 祭2024/8/30、MEGA BIG祭が突如発生した。 MEGA BIGは通常期待値がマイナスであるが、台風の影響でサッカーの試合が一部中止になり第1476回のMEGA BIGの期待値が1を超える可能性があるという投稿があったのだ。 toto MEGA BIGが熱い。 対象の12試合中4試合が中止(自動的中扱い)なので、8試合分当たれば1等というレイドイベント発生。現在キャリーオーバー61億円。 公営ギャンブルとしてはありえない期待値。 なおtoto BIG/100

                      ほんで、MEGA BIGくじにいくら賭ければいいの?|morio
                    • 多店舗展開するジムの会員入退室管理を材料費数万円で実現し、24時間営業にした話

                      ジムの会員管理システムを作った僕に「エニタイムフィットネスみたいなことがしたい」とジムを家族経営するお客さんから相談された。 「えっ!?会員管理を作ったついでにエニタイムフィットネスみたいな仕組みをやりたい!?予算は無い!?不正防止のため、入退室時の写真も撮りたい?!ログもとりたい!?」 さすが筋トレに明け暮れてるオーナーさんの要望はマッチョだと思った。 普通にやれば電子錠の仕組みや工事やらで一店舗あたり数百万から一千万掛かるような仕組みだろう。 そんな予算無いみたいだし、既存の店舗をそんな大々的に工事もできない。そもそも自分にそんな工事の知識もない。 結果Raspberrypiを使い、それを一店舗予算10万円代で実現、会員カードを他店舗と共有した24時間営業にできた。 その詳しい技術的な内訳を共有する。 (なお執筆時点では2024年だが、これ自体は5年前、2019年の仕事である。) 前提

                        多店舗展開するジムの会員入退室管理を材料費数万円で実現し、24時間営業にした話
                      • 暗号の歴史と現代暗号の基礎理論(RSA, 楕円曲線)-後半- - ABEJA Tech Blog

                        はじめに このブログに書かれていること 自己紹介 注意 Part3 現代の暗号 共通鍵暗号方式と鍵配送問題 鍵配送問題とは? 共通鍵暗号方式と公開鍵暗号方式の違いとメリット・デメリット RSA暗号 RSAで使われる鍵 処理手順 暗号化の手順 復号の手順 RSA暗号の数学的背景 一次不定式が自然数解を持つ理由 eとLの関係性 そもそもなぜこの式で元の平文に戻るのか?の数学的根拠 証明パート1 フェルマーの小定理 中国剰余定理 RSA暗号をPythonで 楕円曲線暗号 楕円曲線とは? 楕円曲線の式 楕円曲線における足し算の定義 楕円曲線における引き算の定義 無限遠点 楕円曲線における分配法則と交換法則 楕円曲線の加法を式で表現 点Pと点Qが異なる場合 点Pと点P 同じ点を足し合わせる場合 有限体 有限体とは? 有限体上の楕円曲線 楕円曲線暗号における鍵 ECDH鍵共有 数式ベースでの手順説明

                          暗号の歴史と現代暗号の基礎理論(RSA, 楕円曲線)-後半- - ABEJA Tech Blog
                        • OpenAI API の ファインチューニングガイド|npaka

                          1. ファインチューニングの利点ファインチューニングの利点は、次のとおりです。 (1) プロンプトよりも高品質な応答 (2) プロンプトに収まりきらないより多くの例の適用 (3) プロンプトの短縮によるトークン数 (コスト) の節約 (4) プロンプトの短縮による処理時間の短縮 モデルは膨大な量のテキストで事前学習されており、このモデルを効果的に利用するため、プロンプトに手順や応答の例を指定する手法が使われます。この例を使用してタスクの実行方法を示すことを「Few-Shot」と呼びます。 ファインチューニングで、プロンプトに収まりきらないより多くの例で学習することにより、さまざまなタスクでより良い結果を達成できるようになります。プロンプトに多くの例を指定する必要はなくなります。これによりトークン (コスト) が節約され、処理時間も短縮されます。 2. ファインチューニングの使用料金ファイン

                            OpenAI API の ファインチューニングガイド|npaka
                          • 法律のデータ構造と検索

                            デジタル庁は、法令標準 XML スキーマに準拠した、現行の法令データをe-Gov法令検索というサイト上で公開しています[1]。今回、この法令XMLをパースするPythonライブラリ ja-law-parser をつくり、法令データの全文検索をしてみました。 この記事では、日本の法令とそのデータ構造、法令XMLパーサについて解説し、最後に、それらを使った法令データの全文検索システムを実装する方法をご紹介します。法令検索の実装についても、GitHubリポジトリで公開しています。 この記事は、情報検索・検索技術 Advent Calendar 2023の16日目の記事です。 法律と法令 法律とは 法律の制定と公布 法律と法令の違い 法律の改正 法令のデータ構造 e-Govの法令データ 法令標準XMLスキーマ 法令番号と法令ID 題名 本則と附則 条・項・号 編・章・節・款・目 法令XMLパーサ:

                              法律のデータ構造と検索
                            • 初心者がプログラミングを学ぶときに最も効果的な方法は「写経」だと思う|shi3z

                              プログラミングの勉強方法で最も効果がない方法は「写経」です。コードを記憶しても無駄です。実際のプログラミングでは記憶にないコードを作り出さなければいけないからです 「写経」はタイピング速度の向上やキーワードを覚える効果はあるかもしれませんが、肝心のプログラミングには役に立ちません — Koichi Nakashima (@ko1nksm) September 3, 2024 こういうエントリを見かけたので。 僕は1990年代からプログラミングを人に教える仕事をしています。最初は中学の時に技術家庭科の授業を先生から任されて同級生にプログラミングを教えることから始まりました。その後、色々な方法を試しましたが、結論としてプログラミング初心者は写経した方が結局は上達が速いと今は考えています。 それが特に強く感じられたのは2015年頃から色々な人にAI関連のプログラミングを教え始めた頃です。 AI関

                                初心者がプログラミングを学ぶときに最も効果的な方法は「写経」だと思う|shi3z
                              • Youtubeは無限のクラウドストレージ - Qiita

                                みなさん、こんな経験はありませんか もちろんありますよね。ということで無料で無限にクラウドストレージを使う方法を考えました。(月額130円で50GBは破格だけど) Youtube好き 今回使うのはYoutubeです。ほぼ全員Youtubeを見たことあると思いますが、Youtubeに動画をあげたことがある人はあんまりいないんじゃないでしょうか。 なんとこのYoutube、動画のアップロード数に制限がありません!!!じゃあファイルを動画にしてアップロードしたら好きな時にダウンロードして使えるじゃん。 動画化の方法 ということでやっていきます。まず、ファイルを動画化する方法を考えます。 すべてのファイルはバイト列なので、そいつらをそのまま画像のピクセルにして、そいつらを動画にしたらいいんじゃないかというのが一番最初に思いつくと思いますが、それは甘いです。甘すぎます。 Youtubeに動画をアップ

                                  Youtubeは無限のクラウドストレージ - Qiita
                                • とほほのHaskell入門 - とほほのWWW入門

                                  概要 Haskellとは 関数型言語 純粋関数型言語 インストール Haskell Stack Hello world 基本 予約語 コメント ブロック レイアウト 入出力 型 変数 数値 文字(Char) 文字列(String) エスケープシーケンス リスト([...]) タプル((...)) 演算子 関数 演算子定義 再帰関数 ラムダ式 パターンマッチ ガード条件 関数合成(.) 引数補足(@) 制御構文 do文 let文 if文 case文 where文 import文 ループ データ型 データ型(列挙型) データ型(タプル型) データ型(直和型) 新型定義 (newtype) 型シノニム (type) 型クラス (class) メイビー(Maybe) ファンクタ(Functor) アプリケイティブ(Applicative) モナド(Monad) モジュール (module) 高階関

                                  • 可愛すぎかよ! ハッカーの新しい相棒 コマンドラインからLLMを使えるgptme|shi3z

                                    こういうのが欲しかったんだよ。マジで。 コマンドラインからLLMを呼び出せるgptmeというツールがアツい これは、gptmeコマンドを追加するというもの。 環境変数としてOPENAI_API_KEYとかAnthropicのキーとかを設定しておくと勝手にAPIを呼び出してくれる。もちろん、クラウドに送信するとかけしからんという勢にはローカルLLMでも対応できる。 こいつはコマンドライン版ChatGPTのようなものなので、コマンドラインで動くのだが、その真価は例えばパイプで繋いだ時とかに発揮される。 $ du -d 1|gptme "一番容量を食ってるフォル ダは何Gバイト使ってんの?" Found OpenAI API key, using OpenAI provider [10:13:32] No model specified, using recommended model for

                                      可愛すぎかよ! ハッカーの新しい相棒 コマンドラインからLLMを使えるgptme|shi3z
                                    • 浮動小数点型の算術とお近づきになりたい人向けの記事 - えびちゃんの日記

                                      お近づきになりたい人向けシリーズです。 いろいろなトピックを詰め込みましたが、「これら全部を知らないといけない」のようなつもりではなく、いろいろなことを知るきっかけになったらいいなという気持ちなので、あまり身構えずにちょっとずつ読んでもらえたらうれしい気がします。 まえがき 予備知識 規格 用語 精度という語について 記法 表現について 有限値の表現について エンコードについて 丸めについて よくある誤差や勘違いの例 0.1 = 1 / 10? 0.1 + 0.2 = 0.3? 整数の誤差 Rump’s Example 基本的な誤差評価 用語に関して 実数の丸め 有理数の丸め 基本演算の丸め 差について 複数回の演算 補題たち 桁落ちについて Re: Rump’s example 融合積和 数学関数に関する式の計算 誤差の削減に関して 総和計算 数学関数の精度について 比較演算について 雑

                                        浮動小数点型の算術とお近づきになりたい人向けの記事 - えびちゃんの日記
                                      • 関数名、メソッド名、変数名でよく使う英単語のまとめ

                                        プログラミングをしていると関数名、メソッド名、変数名をどうするか悩みます。 ロジックより命名に時間を費やすこともざらにあります。翻訳したり、一般的な命名規則なのかいつも検索して大変です。 よく使うサイトの内容をコピってメモしておく 関数名とメソッド名の違いについて よく使う英単語のまえに、いつもごっちゃにして使っているけど、定義はこんな感じ 「関数」と「メソッド」の違い 似ているところ どちらも何か(引数)を入れると処理をして何か(戻り値)を返してくれます。 違うところ やってること自体は大差ありません。概念としては違います。 メソッドはオブジェクト指向で登場する用語で、オブジェクトの動作を定義したものです。 まずオブジェクトありきなのですね。一方の関数は、オブジェクト云々は関係ありません。 個人的な使い分け Java で登場する関数は「メソッド」です。C 言語で登場する関数は「関数」と呼

                                          関数名、メソッド名、変数名でよく使う英単語のまとめ
                                        • プログラミング言語論入門 - riswu’s blog

                                          第0章. なぜ Scala を使うのか? はじめに 本稿は、John C. Mitchell 氏らによる Concepts in Programming Languages を基に自身の見解を交え、私がなぜ Scala を好んで使うのかを論じた記事になります。 プログラミング言語の歴史 本題に入る前に、プログラミング言語の歴史について紹介します。 年代 言語・イノベーション 1950 Fortran and Cobol 1960 Lisp and Algol 1970 Abstract data types (Simula, C, SQL) 1980 Objects (Smalltalk, C++) 1990 Java, JavaScript, Python, Ruby これは、年代ごとに開発された言語およびイノベーションを表にまとめたものになります。ただし、この表には欠けている事柄があり

                                            プログラミング言語論入門 - riswu’s blog
                                          • Pythonが速度改善に本気出すと聞いたので恒例のたらい回しベンチをとってみたら、RubyがYJITですごく速くなっていて驚いた話 - Smalltalkのtは小文字です

                                            2022-09-09改訂: gcc バージョンが古すぎたのと、C が内部計測でなかった点を改め計測しなおしました。結果、Rust は C より速くはなくなりました。紛らわしいことで、ごめんなさい。また、gcc のバージョンアップに伴い、Python および Ruby についてはビルドと計測をしなおしたので、これらも少し速い値に変わっています。この点もどうぞあしからず。 2022-09-10追記:ご要望のあった Python numba.njit 使用時と Go の結果を追加しました。PHP は JIT 有効化が面倒だったので断念しました^^; 2022-09-10追記2:C の計測で clock() を使うのはフェアではないという指摘がありましたので、念のため clock_gettime() を使用したコードに差し替えました。結果に大きな差はありません。 2022-09-10追記3:PHP

                                              Pythonが速度改善に本気出すと聞いたので恒例のたらい回しベンチをとってみたら、RubyがYJITですごく速くなっていて驚いた話 - Smalltalkのtは小文字です
                                            • 【2020年】CTF Web問題の攻撃手法まとめ - こんとろーるしーこんとろーるぶい

                                              はじめに 対象イベント 読み方、使い方 Remote Code Execution(RCE) 親ディレクトリ指定によるopen_basedirのバイパス PHP-FPMのTCPソケット接続によるopen_basedirとdisable_functionsのバイパス JavaのRuntime.execでシェルを実行 Cross-Site Scripting(XSS) nginx環境でHTTPステータスコードが操作できる場合にCSPヘッダーを無効化 GoogleのClosureLibraryサニタイザーのXSS脆弱性 WebのProxy機能を介したService Workerの登録 括弧を使わないXSS /記号を使用せずに遷移先URLを指定 SOME(Same Origin Method Execution)を利用してdocument.writeを順次実行 SQL Injection MySQ

                                                【2020年】CTF Web問題の攻撃手法まとめ - こんとろーるしーこんとろーるぶい
                                              • DNSpooqの脆弱性詳細と攻撃コード解説 - knqyf263's blog

                                                概要 要約 詳細 背景 前提 インターネット上に公開されたdnsmasq LAN内のマシンが攻撃者の支配下にある LAN内のマシンに攻撃者管理のWebサイトを閲覧させることができる 影響 中間者攻撃 汚染拡大 DDoS/Reverse DDoS CVE-2020-25684: ポートの多重化 CVE-2020-25685: 脆弱なCRC32の利用 CVE-2020-25686: 同一ドメイン名に対する複数クエリ発行 DNSフォワーダにおけるレスポンスの未検証 組み合わせる ドメイン名の登録 ソースIPアドレスの偽装 CRC32の衝突 攻撃の流れ ブラウザからの攻撃 検証端末 攻撃の成功確率 PoC fowarder cache attacker 大量クエリの送信 偽装レスポンスの送信 高速化の話 実行 対策・緩和策 余談 まとめ 概要 先日DNSpooqという脆弱性が公開されました。 ww

                                                  DNSpooqの脆弱性詳細と攻撃コード解説 - knqyf263's blog
                                                • 【感想】『Amazon Web Servicesを使ったサーバーレスアプリケーション開発ガイド』:Lambdaで本格サービス開発まで - Rのつく財団入り口

                                                  サーバーレスアプリケーション開発ガイド Lambda関数を用いたサーバーレス開発をもっと知っておこうと思って読んだ本の感想です。2018年4月刊行、サーバーレスの主要サービス解説にコードはPython、のみならずフロントはVue.jsを使った本格開発まで、実践的な内容が詰まった本です。 作者は現Amazon Web Services Japan所属のKeisuke69こと西谷圭介さん。Twitterでもよくお見掛けします。(@Keisuke69) サーバーレスアプリケーション開発ガイド Chapter1 サーバーレスアプリケーションの概要 1-1 サーバーレスアプリケーションとは 1-2 ユースケースとアーキテクチャパターン 1-3 サーバーレスアプリケーションのライフサイクル管理 Chapter2 Amazon Web Services(AWS)利用の準備 Chapter3 インフラを自

                                                    【感想】『Amazon Web Servicesを使ったサーバーレスアプリケーション開発ガイド』:Lambdaで本格サービス開発まで - Rのつく財団入り口
                                                  • 【50歳からのAI学習】50歳からのAI開発スキル習得|Gemini CLIのWindows導入記 - uepon日々の備忘録

                                                    Google様がまた新しいAIツール出してきたじゃないですか。正直いうと、また覚えることが増えるのかという感想😅Claude CodeがProプランで使えるようになったと思ったら、今度はGemini CLIですよ...もう追いつけない💦でもやらないと時代に取り残される...😫という話となります。 Gemini CLIって何? ターミナル上で動くGoogleのAIコーディングアシスタントです。「〜を作って」「〜を修正して」とプロンプトに依頼することで開発ができます。Claude Codeと似てるけど、GoogleのGeminiを使ってるのが特徴。個人的にはGeminiの最近の追い上げも見過ごせません。 特徴 Gemini 2.5 Proの100万トークンという巨大なコンテキストウィンドウ マルチモーダル機能(PDFやスケッチからアプリ生成) Google検索との連携でリアルタイム情報取

                                                      【50歳からのAI学習】50歳からのAI開発スキル習得|Gemini CLIのWindows導入記 - uepon日々の備忘録
                                                    • 結婚式のエンドロールを当日作った話

                                                      結婚のお礼と報告 でちょこっと書いた結婚式エンドロールをその場で作ってみたのお話 注意事項# 結婚式のエンドロールを自作したりするには結婚式場の協力が必須です。 作り出す前に式場に必ず確認を取りましょう。 PCからそのままプロジェクトにだせばいいじゃん!と思い込むのだめです(自戒) 動機# エンドロールを式場にお願いしようと思ったら高かったので、最近のイケてるサービスとか適当にガッチャンコすれば作れると思った。 今は反省している。 全体の構成# LINE Botに参加者から画像投稿を投げてもらう S3に保存すると同時に投稿者情報をDynamoDBに保存 投稿された画像にDynamoDBの投稿者情報から名前を追記 画像を全部結合して動画化し、事前に生成したエンドロールで必要な部分を結合 式の最後に流してもらう 全体の構成はこんな感じです。 サーバーレスアーキテクチャのお勉強がてら作ろうとした

                                                        結婚式のエンドロールを当日作った話
                                                      • ついにBitNet Llama8Bが登場! CPUのみで爆速推論するLLM,BitNet.cpp|shi3z

                                                        科学の世界では、それまでの常識が覆ることを俗に「パラダイムシフト」と呼ぶ。 しかし、もしもAIの世界にパラダイムシフトという言葉があるとしたら、今週の人類は一体何度のパラダイムシフトを経験しただろうか。 そのトドメの一撃とも言えるのが、BitNetのLlama8B版だ。 Lllama-8B構造で学習された最初のBitNetであり、全てを変えてしまうゲームチェンジャーでもある。CPUのみで秒間5-20トークンを出力する。超強力なLLM推論エンジンの出現だ。 BitNetとは、そもそも1.58ビットに相当する情報量で、本来は4ビット以上必要な大規模言語モデルの計算を劇的に高速化する技術である。 LLMの推論には通常は巨大な浮動小数点数(8ビットから16ビット)の、大量の乗算(掛け算)が必要なため、GPUなどの特殊な半導体を必要としていた。特にNVIDIAのGPUがこの目的にマッチしていたので今

                                                          ついにBitNet Llama8Bが登場! CPUのみで爆速推論するLLM,BitNet.cpp|shi3z
                                                        • GitHub Actionsで実現する高度なイシュー管理: 安野たかひろ都知事選マニフェストリポジトリの自動化ワークフロー解説 - Sun wood AI labs.2

                                                          ワークフローの概要 このGitHub Actionsワークフローは以下の主要な機能を持っています: 新しいイシューが開かれたときに自動的に起動 イシューの内容を分析し、不適切なコンテンツをチェック 既存のイシューとの重複を検出 必要に応じてラベルを付与 ワークフローの詳細解説 トリガーとパーミッション設定 name: Issue Review on: issues: types: [opened] permissions: issues: write contents: read このセクションでは、ワークフローの名前を定義し、トリガー条件とパーミッションを設定しています。 on.issues.types: [opened]: 新しいイシューが開かれたときにワークフローが起動します。 permissions: ワークフローがイシューの読み書きと、リポジトリコンテンツの読み取りを行うための権

                                                            GitHub Actionsで実現する高度なイシュー管理: 安野たかひろ都知事選マニフェストリポジトリの自動化ワークフロー解説 - Sun wood AI labs.2
                                                          • eBPFに3日で入門した話 - CADDi Tech Blog

                                                            はじめに eBPF とはなにか ざっくり概要 「Packet Filter」なのに「Virtual Machine」? eBPFでなにができるか? カーネルイベントのフック ユーザーランドアプリケーションとのやりとり eBPFの主な用途 eBPFが注目される背景 eBPFの仕組み アーキテクチャと処理フロー カーネルモジュールとeBPFの違い eBPFプログラムの作り方 eBPFプログラムを作ってみる 環境の準備 Hello world もう少し複雑なサンプル その他のサンプル HTTPリクエストのダンプ TCP接続先の調査 tcplife dirtop filetop oomkill まとめ eBPFはなにに使えるか 参考サイト はじめに こんにちは、Platformチームの小森です。 eBPF (extended Berkley Packet Filter) について、2022年8月2

                                                              eBPFに3日で入門した話 - CADDi Tech Blog
                                                            • ルールは現場で死にました - The Rules of Programming の読書感想文 - じゃあ、おうちで学べる

                                                              本日は人生の数ある選択肢のなかから、こちらのブログを読むという行動を選んでくださいまして、まことにありがとうございます。 はじめに プログラミングの世界には多くの指針や原則が存在します。Chris Zimmerman氏の「The Rules of Programming」(邦題:ルールズ・オブ・プログラミング ―より良いコードを書くための21のルール)は、不変の知恵を凝縮した一冊です。これらの原則は、多くの開発現場で活用できる有益な内容となっていると思いました。 The Rules of Programming: How to Write Better Code (English Edition) 作者:Zimmerman, ChrisO'Reilly MediaAmazon 本書は、大ヒットゲーム『Ghost of Tsushima』などで知られるゲーム制作スタジオ、Sucker Pun

                                                                ルールは現場で死にました - The Rules of Programming の読書感想文 - じゃあ、おうちで学べる
                                                              • FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)

                                                                FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ PythonのWebフレームワークとしていま注目を集めるFastAPIは、シンプルにコードが書けるだけでなく、パフォーマンスが高いWebアプリケーションのバックエンドサーバーが構築可能です。同フレームワークの勘所をPythonスペシャリストの杜世橋さんが、初心者向けのハンズオン、そしてより実践的な画像への自動タグ付けサービス実装をとおして解説します。 FastAPIはいま非常に注目されているPythonのWebフレームワークの1つです。Flaskのようにシンプルに書ける一方でPythonのType Hintの機能をうまく活用し、HTTPのリクエスト/レスポンスをPythonの関数の引数/戻り値とシームレスにマッピングして非常に効率的に開発ができるのが最大の特徴です。非同期処理にも対応していてその名

                                                                  FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)
                                                                • プロと読み解く Ruby 3.0 NEWS - クックパッド開発者ブログ

                                                                  技術部の笹田(ko1)と遠藤(mame)です。クックパッドで Ruby (MRI: Matz Ruby Implementation、いわゆる ruby コマンド) の開発をしています。お金をもらって Ruby を開発しているのでプロの Ruby コミッタです。 本日 12/25 に、ついに Ruby 3.0.0 がリリースされました。一昨年、昨年に続き、今年も Ruby 3.0 の NEWS.md ファイルの解説をします。NEWS ファイルとは何か、は一昨年の記事を見てください(なお Ruby 3.0.0 から、NEWS.md にファイル名を変えました)。 プロと読み解く Ruby 2.6 NEWS ファイル - クックパッド開発者ブログ プロと読み解くRuby 2.7 NEWS - クックパッド開発者ブログ Ruby 3.0 は、Ruby にとってほぼ 8 年ぶりのメジャーバージョンア

                                                                    プロと読み解く Ruby 3.0 NEWS - クックパッド開発者ブログ
                                                                  • 再帰的な構造のデータの同値性判定はどうしたらいいか - 貳佰伍拾陸夜日記

                                                                    数日前にTwitterで, JavaScriptのオブジェクトに対する===の挙動が初心者には難しいみたいな話を見かけた. 発端や周辺の議論をちゃんと追いかけてないからとくに出典は貼らない. たぶん元々の話は「へぇ, こういう挙動なんだ, 簡単ではないね」くらいの話だったのかもしれない. 自分のタイムラインの観測範囲では「そうだそうだ, (参照の同一性ではなく)同値性にしとけばいいのに」と思っている人もそれなりにいそうに見えた. 個人的にも同値性が簡単に確認できるとよい気はするものの, 「なんでそうしないんだ, オブジェクトの中身を確認していくだけだろ!」みたいな簡単な話ではないことも知っているため, 以下のようなツイートをしたのだった. JavaScriptのオブジェクトの同値性、再帰的な構造とか作るとぜんぜん自明じゃないんだよなぁ。リンクの構造は違うけどプロパティを辿ったときのパスはど

                                                                      再帰的な構造のデータの同値性判定はどうしたらいいか - 貳佰伍拾陸夜日記
                                                                    • dbtで見やすいER図を生成する - yasuhisa's blog

                                                                      背景: dbtを使っていてもER図は欲しい! どうやってER図を生成するか どうやってER図を見やすくするか まとめ 背景: dbtを使っていてもER図は欲しい! dbtはモデル間のリネージなど可視化が得意なツールではありますが、万能なわけではありません。モデルの生成過程などはリネージで担保できますが、分析時に「どれとどのモデルがJOINできて、JOINする際のキーはこれを使って」というER図で扱うような可視化はディフォルトではできません。 DWHを作っている側からすると「このテーブルはあの辺のテーブルと一緒に使うと便利で、いつもあのキーでJOINして」というのが頭の中に入っていることが多いため、ER図がなくてもどうにかなることも多いでしょう。しかし、分析に慣れていない人や分析に慣れている人であっても、普段と異なるドメインのテーブルを触るときはER図が提供してくれる情報は有用です。ちなみに

                                                                        dbtで見やすいER図を生成する - yasuhisa's blog
                                                                      • Nimを知ってほしい2022

                                                                        Nimを知ってほしいという記事があり、Nimを知らなかった人々向けに最初の紹介として大変な貢献をしてくださりました。 しかしまだNimを使ったプロダクトというのも少なく、競プロではチラホラ見かけるものの、人々の中にある意識としては「気になっています」という域を越えられていないのも事実です。 そこで今回は企業での意思決定をする人や、5年以上の経歴があるエンジニア向けに、Nimを書いてみようと感じてもらうことを目的に、先日私が登壇したみんなのPython勉強会#79 『Pythonistaに伝えたいNimの魅力』に加筆して投稿してみたいと思います。 Nimって何? 2008年から開発が始まった新しいプログラミング言語です。 「Pythonに型が付いて、Goみたいに高速に、バイナリになってOSの実行環境に依存しないで動いてくれる言語ないかな〜」という全プログラマーの夢を叶えてくれる言語です。 書

                                                                          Nimを知ってほしい2022
                                                                        • TypeScriptでどこまで「関数型プログラミング」するか ─ 「手続き Haskell」から考察する - 一休.com Developers Blog

                                                                          この記事は 一休.comのカレンダー | Advent Calendar 2023 - Qiita 10日目の記事です。 昨今は Web アプリケーション開発の世界でも、関数型プログラミングのエッセンスを取り入れるような機会が増えてきました。 とはいえ、一つのアプリケーションを 1 から 10 までがっちり関数型プログラミングで構成するというわけではなく、そのように書くこともあればそうでない従来からの手続き的スタイルで書くところもあるというのが現状で、どこまで関数型プログラミング的な手法を取り入れるかその塩梅もまちまちだと思います。まだ今はその過渡期という印象も受けます。 本稿ではこの辺りを少々考察してみたいと思います。 先日、Qiita Conference 2023 Autumn で以下のテーマで発表を行いました。 この発表では「関数型プログラミング最強!」という話をしたわけではなく、

                                                                            TypeScriptでどこまで「関数型プログラミング」するか ─ 「手続き Haskell」から考察する - 一休.com Developers Blog
                                                                          • ChatGPT APIを取り巻くライブラリ 〜LangChainとguidanceの紹介 | gihyo.jp

                                                                            こんにちは! 逆瀬川(@gyakuse)です! 前回はOpenAIが公開しているChat APIとWhisper APIを用いて議事録文字起こしアプリケーションを作ってみました。今回は、Chat APIを便利に使うためのライブラリであるLangChainとguidanceを紹介していきます。 なぜ便利に使うためのライブラリが必要なのか? 単純にChat APIにリクエストを送るだけであれば、各言語に用意されたライブラリを使うだけで良いでしょう。たとえば、Pythonにおいてはopenai-pythonが用意されています。前回紹介したとおり、Chat APIを使うだけなら以下のようなリクエストを作るだけで済みます。 import openai openai.api_key = "sk-..." # APIキー completion = openai.ChatCompletion.create

                                                                              ChatGPT APIを取り巻くライブラリ 〜LangChainとguidanceの紹介 | gihyo.jp
                                                                            • Software Design連載 2022年1月号 運用監視の解像度アップとサービス横断的なログ基盤の整備 - MonotaRO Tech Blog

                                                                              こんにちは。中山(id:yoichi22) です Software Designに連載させていただいております「Pythonモダン化計画」では、モノタロウの社内事例から読者の皆様のお役に立ちそうな取り組みを紹介させていただいています。のですが、社内でも隣のチームがやってた取り組みを記事で初めて知ることもあって、私も読者として楽しませてもらっています。隣の執筆者さんありがとうございます。 今回は、運用にまつわる監視とログの話題です。本記事の初出は、Software Design2022年1月号「Pythonモダン化計画(第6回)」になります。過去の連載記事は以下を参照ください。 第1回 Software Design連載 2021年8月号 Python製のレガシー&大規模システムをどうリファクタリングするか 第2回 Software Design連載 2021年9月号 「テストが無い」からの

                                                                                Software Design連載 2022年1月号 運用監視の解像度アップとサービス横断的なログ基盤の整備 - MonotaRO Tech Blog
                                                                              • Gemini 2.5 Proと取り組んだデータ分析のリアルな道のり - Nealle Developer's Blog

                                                                                はじめに はじめまして。Analyticsチームの清水です。 2024年12月に入社しまして、約4ヶ月が経過しました。今回が初めてのテックブログになります。 ▼先日、入社エントリも公開しました。 本稿のテーマは、自由記述のテキストをラベリングして分類する分析タスクに対し、Geminiと共に取り組んで分かったことの共有です。 私は生成AIをそれほどたくさん使った経験があるわけではないので、これが最良の使い方というわけではないと思いますが、どのようにプロンプトを組み立て、どう効率的に分析を進められたのかを可能な限りリアルに書いていきます。 ※今回利用したモデルは、Gemini 2.5 Proです。 はじめに Geminiを活用したデータ分析の進め方 フェーズ0: アプローチの模索 - Notebook LMや教師なし学習の試行 フェーズ1: データ理解とラベルチェック - コード生成と探索的分

                                                                                  Gemini 2.5 Proと取り組んだデータ分析のリアルな道のり - Nealle Developer's Blog
                                                                                • N番目の素数を求める - すぎゃーんメモ

                                                                                  SNSなどで話題になっていたので調べてみたら勉強になったのでメモ。 環境 Pythonでの実装例 例1 例2 例3 エラトステネスの篩 Rustでの実装例 試し割り法 エラトステネスの篩 アトキンの篩 おまけ: GMP Benchmark 高速化のテクニック 上限個数を見積もる Wheel factorization オチ Repository References 環境 手元のMacBook Pro 13-inchの開発機で実験した。 2.8 GHz Intel Core i7 16 GB 2133 MHz LPDDR3 Pythonでの実装例 例1 最も単純に「2以上p未満のすべての数で割ってみて余りが0にならなかったら素数」とする、brute force 的なアプローチ。 import cProfile import io import pstats import sys def m

                                                                                    N番目の素数を求める - すぎゃーんメモ