タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとnlpとsearchに関するyokochieのブックマーク (2)

  • 最大マージン kNN と SVM の関係: kNN も最近はがんばっています - 武蔵野日記

    先日書いた機械学習における距離学習の続き。 kNN (k-nearest neighbour: k 近傍法)は Wikipedia のエントリにも書いてある通り、教師あり学習の一つで、あるインスタンスのラベルを周辺 k 個のラベルから推定する手法。memory-based learning と呼ばれることもある。単純に多数決を取る場合もあれば(同点を解決する必要があるが)、近いインスタンスの重みを大きくする場合もあるのだが、いずれにせよかなり実装は単純なので、他の機械学習との比較(ベースライン)として使われることも多い。 簡単なアルゴリズムではあるが、1-NN の場合このアルゴリズムの誤り率はベイズ誤り率(達成可能な最小誤り率)の2倍以下となることが示されたり、理論的にもそれなりにクリアになってきているのではないかと思う。また、多クラス分類がちょっと一手間な SVM (pairwise に

  • Latent Semantic Indexing - naoyaのはてなダイアリー

    情報検索におけるベクトル空間モデルでは、文書をベクトルとみなして線形空間でそれを扱います。この文書ベクトルは、文書に含まれる単語の出現頻度などを成分に取ります。結果、以下のような単語文書行列 (term document matrix) が得られます。 d1 d2 d3 d4 Apple 3 0 0 0 Linux 0 1 0 1 MacOSX 2 0 0 0 Perl 0 1 0 0 Ruby 0 1 0 3 この単語文書行列に対して内積による類似度などの計算を行って、情報要求に適合する文書を探すのがベクトル空間モデルによる検索モデルです。 見ての通り、単語文書行列の次元数は索引語の総数です。文書が増えれば増えるほど次元は増加する傾向にあります。例えば索引語が100万語あって検索対象の文書が 1,000万件あると、100万次元 * 1,000万という大きさの行列を扱うことになりますが、単

    Latent Semantic Indexing - naoyaのはてなダイアリー
  • 1