タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとrecommendationとlshに関するhiromarkのブックマーク (4)

  • LSH その1 -LSHの種類-|JAVAでデータマイング!

    JAVAでデータマイング!『情報工学の難しいそうなアルゴリズムをJAVAで実装して、ひたすらその結果を公開する』ブログになる予定。エンジニア/学び・教育 LSH

    hiromark
    hiromark 2009/09/24
    ちょっと深追いしてみたい。
  • くさもち研究室生活ブログだったもの LSHまとめ(1)

    LSHは近似最近傍探索(Approximate Nearest Neighbor)アルゴリズムの一つ. 近似最近傍探索とは,簡単に言うとクエリqから半径(1+ε)内にある点vを探索すること. つまり,半径(1+ε)の点のうち,どれか1つでも探索できればおk. 言葉の意味そのままに最近傍探索(Nearest Neighbor)の条件を少し緩くした探索といえる. (実は,特徴ベクトルの次元がd=2の場合なら,ボロノイ図を使えば近似最近傍探索ができる) LSHはハッシュ関数を用いた確率的探索で近似最近傍探索を解く. そう,実はハッシュ関数を用いるということ以上に確率的探索ということに大きな意味がある.(これが自分にとってはかなりやっかいな問題) LSHでは,クエリqと近傍(半径(1+ε)以内)にある点ではハッシュ値が一致する確率が高く, クエリqと遠い位置にある点ではハッシュ値が一致する確率が低

    hiromark
    hiromark 2008/12/25
    LSH の概要がわかりやすくまとまっている。
  • GoogleNewsのレコメンドの中身 - UMEko Branding

    先日、全体ゼミで発表したときの内容ですが、ここにまとめときます。。GoogleNewsのレコメンドの中身を追った論文の要約です。少し前の全体ゼミで用いた資料です。ソース:Abhinandan Das,Mayur Datar,Ashutosh Garg,Shyam Rajaram,"Google News Personalization: Scalable OnlineCollaborative Filtering",WWW2007不勉強な個所が多々ありますので、誤っている箇所等ありましたら、是非ご指摘ください。 個人的には、最近のモデルベースの手法の勉強・おさらいという意味で用いているので、GoogleNews独自の拡張なり実装の部分の内容が省かれている場合があります。また、データ構造やMapReduceを用いた計算の仕組みの部分は、ここでは省略しています。。一応、 全体像 ・LSH(Lo

    hiromark
    hiromark 2008/12/22
    GooleNews で使われているアルゴリズムの概説。"LSH(Local Sensitivity Hashing),PSLA, Co-Visitationという3つのレコメンド器の線形和"。論文読んだ。実践的な内容。
  • 楽天も情報爆発しています - 武蔵野日記

    楽天テクノロジーカンファレンスには行かれなかったのだが、大規模分散処理フレームワークの設計、実装が進行中 -- 楽天MapReduce・HadoopはRubyを活用などを読むと、けっこうおもしろそうだったのだな、と分かる。 楽天技術研究所がどういう位置づけなのかは分からないが、こういう基盤技術の開発を支援しているというのは評価していいと思う。(車輪の再発明という気がしないでもないが) 個人的な興味としては楽天が大規模データに対してどういうことをしているかということなのだが、記事を見るといろいろ書いてある。 計算モデルがシンプルでも規模が巨大になるとまったく別の問題が生まれてくる。処理すべき情報量が爆発的に増加しているからだ。 例えば協調フィルタリングではユーザーを縦軸に、商品アイテムを横軸にした購買履歴マトリックスについて計算処理を行う必要があるが、あまりに量が多く、素直に実装すると「2

    楽天も情報爆発しています - 武蔵野日記
    hiromark
    hiromark 2008/12/05
    コメント欄が熱い!
  • 1