June 26, 2016 | Co-located with SIGMOD 2016 in San Francisco, CA Introduction Any data management system needs to work together with people, whose needs determine the goals for the system, and who must provide the input and who need to work effectively with the output. Data management systems will work much better when they take account of the cognitive and physiological characteristics of the peo
(前回記事はこちらから) ベイジアンの知識もいい加減な僕がこんなシリーズ記事を書くとかほとんどギャグの領域なんですが(汗)*1、2回目の今回の記事ではそもそもMCMCって何だったっけ?ってところから始めようと思います。 今回参考にするのは、主に久保先生の緑本です。そもそもGLM~GLMM~階層ベイズ+空間統計学について生態学研究をモチーフに分かりやすく書かれた本ですが、後半はMCMCの話題で統一されています。 データ解析のための統計モデリング入門――一般化線形モデル・階層ベイズモデル・MCMC (確率と情報の科学) 作者: 久保拓弥出版社/メーカー: 岩波書店発売日: 2012/05/19メディア: 単行本購入: 16人 クリック: 163回この商品を含むブログ (18件) を見る MCMCまわりでは他にも非常に多くの良書がありますが、「初心者向けにも分かりやすくて」「段階を追って」「なぜ
桜がとってもきれいですね.すずかけ台は8分咲きといったところです.ところで,仲間で行っている小規模な勉強会で “Unified Expectation Maximization” Samdani et al, NAACL2012 を紹介してきたので,資料をslideshareにあげておきました. Unified Expectation Maximization from koji_matsuda Unified EMというと,じゃっかん大風呂敷な感じのタイトルですが,キーとなるアイデアはとても単純で,EMアルゴリズムのE-Stepで最小化するKLダイバージェンスにちょっと細工を入れることで,Hard-EMとふつうのEMの中間くらいの性質を持ったアルゴリズムになりますよ.というお話です.Deterministic Annealing EMの逆バージョンみたいな雰囲気(実際,DAEMもこの枠組
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く