並び順

ブックマーク数

期間指定

  • から
  • まで

81 - 120 件 / 5590件

新着順 人気順

Pythonの検索結果81 - 120 件 / 5590件

  • 今年俺を一番幸せにしたDX最高な奴ら10選

    みなさん、普段から開発者体験(DX)を気にしてますか? DXとは、開発中に感じる“心地よさ”や“効率の良さ”を指します。 車輪の再開発のようなDXを損なう体験がなければ開発はずっと楽しいんです! そこでこの記事では、「心から開発を楽しめる」相棒たちを10選紹介します! 1. Convex “SQLの呪縛”からの解放 歴史のあるSQLはどうしても、歴史に引っ張られます。 Supabaseとかを使ってると、Row Level SecurityやSQL Functionsとかで、死ぬほど書きにくいSQLを書かなきゃいけなくなることありますよね。まるでFirebaseの認証ルール並み。良くも悪くも結局SQLだから、隠しきれない歴史の重み、つまりDXの悪さがでてくる。 しかしConvexは一切そういうのはありません!!!! 全てがDXを中心に一から考えられて作られたサービス。そう、React時代のバ

      今年俺を一番幸せにしたDX最高な奴ら10選
    • 東京大学深層学習(Deep Learning基礎講座2022)深層学習と自然言語処理

      東京大学深層学習(Deep Learning基礎講座2022)https://deeplearning.jp/lectures/dlb2022/ 「深層学習と自然言語処理」の講義資料です。

        東京大学深層学習(Deep Learning基礎講座2022)深層学習と自然言語処理
      • 顔写真から自閉症を判別してみた - Qiita

        はじめに この記事では今回開発したWebアプリ、自閉症識別(後に理由を説明しますが、動作が大変モッサリです)を公開するまでの経緯や考え・思いをまとめた。 6月中旬に差し掛かる頃から、Aidemy PewmiumのAIアプリ開発コースで、Pythonを用いてアプリ開発を行えるようになることを目標に学んできた。その成果として開発したのが、顔写真から自閉症を判別するWebアプリだ。 この記事では私自身がプログラミング超初心者として、そしていち支援者として感じたことも多く綴っているため、必要に応じて適宜読み飛ばしてもらえると良いかもしれない。 開発開始に至るまで 私はこちらの記事にあるように、保育士として児童発達支援に関わってきた。大変ではあるが非常に楽しい仕事だった。とはいえAidemyの講座受講中、成果物を何にするかをずっと考えていたが、この領域で何かやろうなんてことは全く考えていなかった。

          顔写真から自閉症を判別してみた - Qiita
        • 社内デザインシステムをMCPサーバー化したらUI実装が爆速になった

          はじめに こんにちは、普段 Ubie で症状検索エンジンユビー(https://ubie.app/)の開発をしている江崎です。 最近、Cursor エディタや GitHub Copilot などのコーディングアシスタントツールが進化し続けていますが、社内固有のデザインシステムとの連携はまだまだ課題が残っていました。そこで社内エンジニアである sosuke とともに、Ubie Vitals というデザインシステムを MCP サーバー化することで、UI 開発の速度と精度が劇的に向上した体験を共有します。 目次 デザインシステムと開発の現状課題 MCP サーバーの登場 Ubie UI MCP の構築 デモ テキストだけで UI 実装が可能に デザイナーの壁打ち相手としての可能性 今後の展望 デザインシステムと開発の現状課題 Ubie では「Ubie Vitals」というデザインシステムに則って

            社内デザインシステムをMCPサーバー化したらUI実装が爆速になった
          • Google、AIを使って非構造化テキストから構造化データを抽出するオープンソースPythonライブラリ「LangExtract」をリリース | gihyo.jp

            Google⁠⁠、AIを使って非構造化テキストから構造化データを抽出するオープンソースPythonライブラリ「LangExtract」をリリース Googleは2025年7月30日、非構造化テキストから構造化データを抽出するオープンソースのPythonライブラリ「LangExtract」をリリースした。 Introducing LangExtract: A Gemini powered information extraction library -Google Developers Blog ✨Announcing LangExtract! ✨ Our new open-source Python library for information extraction, powered by #Gemini. ✅ Turn text into structured data ✅ Trace

              Google、AIを使って非構造化テキストから構造化データを抽出するオープンソースPythonライブラリ「LangExtract」をリリース | gihyo.jp
            • アルゴリズムと数学の本を書きました - E869120's Blog

              1. はじめに こんにちは、はじめまして。東京大学 1 年生の米田優峻(E869120)と申します。私は競技プログラミングが趣味で、AtCoder や国際情報オリンピックなどの大会に出場しています1。2021 年 11 月時点で、AtCoder では赤色(レッドコーダー)です。また、2020 年以降、アルゴリズムを学べる以下のようなコンテンツや資料を作成してきました。 レッドコーダーが教える、競プロ上達ガイドライン 競プロ典型 90 問 50 分で学ぶアルゴリズム さて、このたびは技術評論社から、書籍を出版させていただくことになりました2。アルゴリズムと数学が同時に学べる新しい入門書です。 「アルゴリズム×数学」が基礎からしっかり身につく本 - amazon 発売日は今年のクリスマス、2021/12/25 です。電子書籍版も同時期に出る予定です。本記事では、この本の内容と想定読者について、

                アルゴリズムと数学の本を書きました - E869120's Blog
              • プログラミング言語の未来はどうなるか | κeenのHappy Hacκing Blog

                κeenです。最近JEITAのソフトウェアエンジニアリング技術ワークショップ2020に参加したんですが、そこで五十嵐先生、柴田さん、Matzとパネルティスカッションをしました。その議論が面白かったので個人的に話を広げようと思います。 年末年始休暇に書き始めたんですが体調を崩したりと色々あって執筆に時間がかかってしまいました。 時間を置いて文章を書き足していったので継ぎ接ぎ感のある文体になってるかもしれませんがご容赦下さい。 というのを踏まえて以下をお読み下さい。 いくつか議題があったのですが、ここで拾うのは一番最後の「プログラミング言語の未来はどうなるか」という話題です。 アーカイブが1月末まで残るようです。もうあと数日しかありませんが間に合うかたはご覧下さい。 そのとき各人の回答を要約すると以下でした。 五十嵐先生:DSLを簡単に作れる言語というのが重要。それとプログラム検証、プログラム

                  プログラミング言語の未来はどうなるか | κeenのHappy Hacκing Blog
                • pipとpipenvとpoetryの技術的・歴史的背景とその展望 - Stimulator

                  - はじめに - Pythonのパッケージ管理ツールは、長らく乱世にあると言える。 特にpip、pipenv、poetryというツールの登場シーン前後では、多くの変革がもたらされた。 本記事は、Pythonパッケージ管理ツールであるpip、pipenv、poetryの3つに着目し、それぞれのツールに対してフラットな背景、技術的な説明を示しながら、所属企業内にてpoetry移行大臣として1年活動した上での経験、移行の意図について綴り、今後のPythonパッケージ管理の展望について妄想するものである。 注意:本記事はPythonパッケージ管理のベストプラクティスを主張する記事ではありません。背景を理解し自らの開発環境や状態に応じて適切に技術選定できるソフトウェアエンジニアこそ良いソフトウェアエンジニアであると筆者は考えています。 重要なポイントのみ把握したい場合は、各章の最後のまとめを読んで頂

                    pipとpipenvとpoetryの技術的・歴史的背景とその展望 - Stimulator
                  • 投資で破産しないための数学:ケリー基準を理解する - Qiita

                    投資で破産しないための数学:ケリー基準を理解する はじめに:なぜ優秀なトレーダーも破産するのか 投資の世界には不思議な現象があります。勝率が55%もある、つまり負けるより勝つ方が多いトレーダーが、なぜか破産してしまうのです。一方で、同じ勝率でも着実に資産を増やし続ける投資家もいます。この違いは何でしょうか。 答えは「ポジションサイズ」にあります。どんなに優れた投資戦略を持っていても、一度に賭ける金額を間違えれば、最終的には資産を失ってしまいます。逆に、勝率がそこそこでも、適切な資金管理をすれば長期的に成功できるのです。 この記事では、1956年にベル研究所のジョン・L・ケリー・ジュニアが発見した「ケリー基準(Kelly Criterion)」について、Pythonシミュレーションを交えながら解説します。この数学的手法は、長期的に最も効率よく資産を増やすための賭け金を教えてくれます。 ケリー

                      投資で破産しないための数学:ケリー基準を理解する - Qiita
                    • midjourneyより高性能だけど入口の敷居が高すぎるStable Diffusionについて、かわなえさんによる導入方法解説まとめ+他の人の補足など

                      リンク ITmedia NEWS 画像生成AI「Stable Diffusion」がオープンソース化 商用利用もOK AIスタートアップ企業の英Stability AIは、画像生成AI「Stable Diffusion」をオープンソース化した。AI技術者向けコミュニティサイト「HuggingFace」でコードやドキュメントを公開した他、同AIを試せるデモサイトなども公開している。 154 users 134 リンク はてな匿名ダイアリー HなStable Diffusion 前提として、StableDiffusionでエロ画像を出そうとしてもsafetycheckerという機能が入っており、センシティブな画像を出そうとすると黒塗りになる。(Stable… 180 users

                        midjourneyより高性能だけど入口の敷居が高すぎるStable Diffusionについて、かわなえさんによる導入方法解説まとめ+他の人の補足など
                      • 英語力と技術力向上のための海外Tech系Youtuber10選 +n - Qiita

                        Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 身につまされる英語力問題。手っ取り早く英語を習得するなら海外に行ってしまうが最善なはずですがこのコロナ禍、身近なところで英語に触れつつ技術も勉強したい?といえば、動画です。 10 Developers You Should Follow to Improve Your Skills (スキルを上げるための、フォローすべき開発者10選) という記事があったので10人をまとめた。プラスオマケ。それぞれ実際に動画を見てみての補足付き。 1. Ben Awad (ベン・アワド) ソフトウェア開発者。React、React Native、Grap

                          英語力と技術力向上のための海外Tech系Youtuber10選 +n - Qiita
                        • Python だけで作る Web アプリケーション(フロントエンド編)

                          Python だけで作る Web アプリケーション第一弾です。HTML/CSS/JSを使わずに、PythonだけでUIを含むWebアプリケーションを作ります。

                            Python だけで作る Web アプリケーション(フロントエンド編)
                          • AIコーディングのプラクティス

                            ・Claude Sonnet 3.7を使え ・Project Rules(.cursor/rules)を使え ・ビルド、lint、テストなどで高速にフィードバックさせろ ・1セッションあたりで依頼することはできるだけ少なくしろ ・よく使うコマンドやライブラリはチートシート作れ Yamada 補足 2025/03/06現在 Roo-Code は .cursor/rules を自動で参照しない。.clinerules, .cursorrules, .windsurfrules は自動で見ておりすべてを結合してコンテキストに入れる。Roo-Codeを使う人は .cursorrules を設定しておくのがよい。

                              AIコーディングのプラクティス
                            • Udemyの番人がおすす - Qiita

                              Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 私はUdmeyに年間50万??ぐらい教材に投資して常に、Udemyに貼り付いて良い講座ができるのを監視しています。その中で、最後まで講座を受講してその講座の感想を書きたいと思います。私は、優良だと思わない講座は即返金処理を行うので、ここに紹介される講座は、とてもわかりやすいものしか基本的に載せてありません。この記事は更新されていきますので、ご興味ある方はいいねとストックをお願いします。(よかったやつ証明書とかコピペしてここに貼るの正直まじでめんどくさいので、更新するモチベーションに繋がります)。下記に書いてあるものは全部、優良のものだが

                                Udemyの番人がおすす - Qiita
                              • ゼロから始める、データ分析と可視化 - Kyash Product Blog

                                はじめまして。Kyashでデータエンジニアリングを担当しているKyashデータマンです。この記事では、Kyash社内のデータ分析の基礎に関するドキュメントを紹介します。 Kyashでは、データエンジニアリング・ガバナンス・セキュリティなど様々な角度から、公正なデータの取扱いと活用を推進しています。従来は、一部の訓練された技術者がデータ分析を一手に担っていましたが、社内でもデータ活用のニーズも多く、その担当者に分析や集計の業務が集中するという課題がありました。 この課題に対して、データへの適切なアクセス管理を行い、そして適切なBIツールを導入することで、データを取り扱う人が自分でデータ分析・そして活用できるようになることを目指しています。アクセス管理には、個人情報やそれに準ずる機密データに対して、ポリシータグによるアクセス権のコントロール、そしてアクセス権のリネージなどのソリューションの導入

                                  ゼロから始める、データ分析と可視化 - Kyash Product Blog
                                • 凄すぎると話題の「Open Interpreter」の始め方・使い方まとめ - Qiita

                                  以下の記事を見て、早速「Open interpreter」を試してみたので、使い方や始め方をまとめておきます Open Interpreterとは Open Interpreterは、GPT-3.5、GPT-4、Code Llamaなどの大規模言語モデル(LLMs)を活用して開発されたオープンソースのツールです。 このツールは、OpenAIが提供するChatGPTの「Advanced Data Analysis(旧Code Interpreter)」のオープンソース版とも言える存在で、Python、Javascript、Shellなどのプログラミング言語のコードを自然言語による対話を通じてローカル環境で実行することができます。 このツールの最大の特徴は、ChatGPTの「Advanced Data Analysis」と違いローカル環境で動くため、ファイル容量やネット接続への制約がなく、Ch

                                    凄すぎると話題の「Open Interpreter」の始め方・使い方まとめ - Qiita
                                  • ツイッター上でウクライナ政府をネオナチ政権だと拡散しているのは誰か(鳥海不二夫) - エキスパート - Yahoo!ニュース

                                    2022年2月24日にロシア軍がウクライナに侵攻しました. 3月7日現在いまだ侵攻は続いており,一般市民にも多くの死傷者が出ているということで早期の収束を願うばかりです. ロシア側はウクライナへの侵攻の正当性として,ウクライナ政権はネオナチ政権であるという主張をしているようです. プーチン氏は安全保障会議で「我々はまさにネオナチと戦っている」と述べ、ウクライナ政府側をネオナチ扱いした。 https://mainichi.jp/articles/20220304/k00/00m/030/061000c 日本のマスメディアでこの主張を入れているところはあまりないようですが,ソーシャルメディア上ではこの主張に沿ってロシアの侵攻を正当化しているグループもあるようです. ロシアによるウクライナ侵攻について、日本では「単なる思い込みによる誤解」から「めちゃめちゃな陰謀論」まで、ツイッターのみならず、ウ

                                      ツイッター上でウクライナ政府をネオナチ政権だと拡散しているのは誰か(鳥海不二夫) - エキスパート - Yahoo!ニュース
                                    • Google、ORMが生成するSQLが遅いときの調査を容易にする「sqlcommenter」をオープンソースで公開。Rails、Spring、Djangoなど主要なフレームワークに対応

                                      Google、ORMが生成するSQLが遅いときの調査を容易にする「sqlcommenter」をオープンソースで公開。Rails、Spring、Djangoなど主要なフレームワークに対応 SQL文を直接書かなくとも、自動的にSQL文を生成、実行してくれるORM(Object-Relational Mapper)は、プログラミングを容易にしてくれる技術としてRailsやHibernate、Springなどさまざまなフレームワークなどで活用されています。 一方で、ORMが生成するSQL文はときに複雑に、あるいは非効率なものとなり、データベース処理の遅さにつながることもあります。 このとき、SQL文の生成と実行を明示的にコードとして記述する必要がないというORMの特徴が、なぜデータベース処理が遅くなったのか、どのようなSQL文が生成され、そのどこに原因があるのか、といった調査を難しくている面があり

                                        Google、ORMが生成するSQLが遅いときの調査を容易にする「sqlcommenter」をオープンソースで公開。Rails、Spring、Djangoなど主要なフレームワークに対応
                                      • 【個人開発】爆速な賃貸物件の検索サービスを作った - Qiita

                                        2024年11月現在の最新の構成に関する記事をこちらに書きました。 よろしければそちらもご参照下さい。 (Qiita の本記事は、2022年4月時点の構成に関しての記事で、多少古い内容が含まれています。) 個人開発で 賃貸物件の検索サービス Comfy を作りました1。グラフや地図でサクサク絞り込める UI が特徴のサービスです。とにかく気持ち良い使い勝手を実現するために色々工夫しています。 既にリリースからは 4 ヶ月以上経っているのですが、改めてサービスの概要や、システム構成及び使用した技術・サービスをご紹介しようと思います。2。 サービスの概要 Comfy は日本全国の賃貸物件を検索できる Web サービス です。画面 UI は上の GIF 画像のような感じです。 こだわったポイントを色々書くよりも実際にさわって頂いた方が新感覚の UI や気持ちよさを体感頂けるかと思いますので、 実

                                          【個人開発】爆速な賃貸物件の検索サービスを作った - Qiita
                                        • Udemyで新春セール開催! 2020年にUdemyで最も興味を集めたカテゴリートップ5と人気コースを紹介 - はてなニュース

                                          2020年は新型コロナウイルスの流行、それに伴うリモートワーク(テレワーク)やワーケーション、オンライン授業での学習といった大きな社会的変化がありました。 意図せず起きた変化ではありましたが、働き方や学び方の変化は、自分次第で何かを大きく変えられるチャンスでもあります。内閣府の調査*1によると、在宅勤務などで生じた空き時間を新たな挑戦に充て、オンライン学習でプログラミングなどIT関連の学習に取り組む社会人が増えているとのこと。 めまぐるしく変わる社会へ適応するためには、自分にとって必要な情報を見極めるだけでなく、時代と共に学び続ける姿勢も必要。新しい学びはきっとあなたの強い味方になってくれることでしょう。ちょうどオンライン学習プラットフォーム「Udemy」では、2020年12月30日(水)~2021年1月7日(木)の間、対象の講座を1,200円から受講できる新春セールを開催。講座は買い切り

                                            Udemyで新春セール開催! 2020年にUdemyで最も興味を集めたカテゴリートップ5と人気コースを紹介 - はてなニュース
                                          • 中学1年生が開発した「カラスからゴミを守るシステム」の成果 Python、TensorFlowLite、Raspberry Piなどを活用 | ログミーBusiness

                                            五島氏の自己紹介尾藤正人(以下、尾藤):メンターの尾藤です。僕がメンターをさせてもらった、五島くんのカラスを追い返すシステムの発表をお願いしたいと思います。五島くん、どうぞ。 五島舜太郎氏(以下、五島):はい。みなさんこんにちは。五島舜太郎です。僕は今回「scairecrow」という、カラスからゴミを守るシステムの開発を行いました。 (会場拍手) ありがとうございます。scarecrowとは英語でカカシを意味する単語ですが、今回は「AIの機能を内蔵したカカシ」という意味を込めて名付けました。 では自己紹介です。年齢は13歳、中学1年生です。趣味はLEGOや電子工作、『Minecraft』などをすることです。電子工作ではArduinoやmicro:bitなどを使っています。『Minecraft』ではJavaでModの製作をしています。 プロジェクトを進めようと思った経緯五島:では今回、このプ

                                              中学1年生が開発した「カラスからゴミを守るシステム」の成果 Python、TensorFlowLite、Raspberry Piなどを活用 | ログミーBusiness
                                            • 【生成AIの学習ロードマップ】最近やたら羽振りのいいやつが生成AIを極めてた件について。 - Qiita

                                              はじめに 生成AIによって世の中は大きく変わります。単なるブームではないと確信しています。 研究者の間では数年で「あと人間の知能に匹敵するAIが出てくるだろう」と言われているほどです。 「生成AIって社内でもよく聞くけど何から始めればいいかわからない...」 「AIに興味はあるけど初期設定とか大変そう...」 この手順で学べば流石に初心者でも生成AIを使いこなせる人材になれるロードマップを整理しました。 誰も生成AIの大波に置いていかれないような記事を目指します。 対象読者 生成AIを学んでスキルアップしたい方 社内でAI活用してさらに活躍をしたい方 AIの波に乗って市場価値の高い人材を目指す方 記事の構成 本記事は入門編と発展編に分かれています。入門編では「AIを使える人材」になるためのゼロからのロードマップを記載しています。発展編では「AIアプリを作れる人材」になるためのステップアップ

                                                【生成AIの学習ロードマップ】最近やたら羽振りのいいやつが生成AIを極めてた件について。 - Qiita
                                              • 【🚨無職発生注意報🚨】ヒトはこうして仕事を奪われる~Browser Use Tutorial~ - Qiita

                                                はじめに 2025年はAIエージェントの年です。注目されているAIエージェントの一つが『AIが自動で自分のPC画面を操作』するBrowser Useというツールです。 Browser Useの面白さ Browser Useを使うと、AIが自動で自身のPC画面を操作することであらかじめ決めた目的を達成をしてくれます。 簡単な指示を出すだけで、自動でAIが色々操作してくれるのはキャッチーで衝撃的ですよね。 例えば下記のように完全自動でAIが記事を検索して記事の情報を取得してくれます。 簡単な指示でAIが自分で考えて画面操作をしてくれるのは近未来感ありますよね。 しかし、現場でAIを使いこなすには「AIがすごい」のレベルではまだ足りません。 実際に触ってみて何ができるのか?逆に何が苦手なのか?という肌感覚を持つことが非常に重要です。 そこで本記事は、その肌感覚を養うために実際にBrowser U

                                                  【🚨無職発生注意報🚨】ヒトはこうして仕事を奪われる~Browser Use Tutorial~ - Qiita
                                                • ゲームで学べる、Pythonプログラミング学習サービス「novoc studio」リリース

                                                    ゲームで学べる、Pythonプログラミング学習サービス「novoc studio」リリース
                                                  • Stable Diffusion を基礎から理解したい人向け論文攻略ガイド【無料記事】

                                                      Stable Diffusion を基礎から理解したい人向け論文攻略ガイド【無料記事】
                                                    • https://utokyo-icepp.github.io/qc-workbook/welcome.html

                                                      • 「Python」×「株価データ」で学ぶデータ分析のいろは

                                                        日々変動する株価データを題材にPythonにおけるデータ分析のいろはを学んでいく本連載。最終回はローソク足とともにこれまでに計算したオシレーターなど一式を1つのグラフで表示する方法や過去の株価データを基にした株価予測の方法を解説します。

                                                          「Python」×「株価データ」で学ぶデータ分析のいろは
                                                        • 行政の統計資料のような非構造化データをGPTで構造化データに変換する|mah_lab / 西見 公宏

                                                          今朝方GPT-4が発表されて、みなさん死ぬほど盛り上がってますねー。 GPT-4を使えば一発でできそうなネタではありますが、GPT-4 APIのお値段は3.5よりもお高めの設定なので、これからはどのように上手くGPTのバージョンを使い分けていくかが問われていくと思います。 というわけで今日は非構造化データを構造化データに変換する話です。 問題の背景行政が定期的に公開している統計資料をご覧になったことはありますでしょうか。ディスる訳ではないですが、以下に示すのは私が住んでいる富士吉田市の統計資料です。 統計ふじよしだ令和元年度版 - 商業 このように分かりやすい表で情報を提供してくれるのはありがたいのですが、数値データにはなっていないので分析に活用することができません。 GPTのパワーを使って、このような非構造化データを構造化データに変換できないか?というのが本日のお題になります。 コードP

                                                            行政の統計資料のような非構造化データをGPTで構造化データに変換する|mah_lab / 西見 公宏
                                                          • 12時間でAIや機械学習の基礎を学べる人気講座が無料に | Ledge.ai

                                                            サインインした状態で「いいね」を押すと、マイページの 「いいね履歴」に一覧として保存されていくので、 再度読みたくなった時や、あとでじっくり読みたいときに便利です。

                                                              12時間でAIや機械学習の基礎を学べる人気講座が無料に | Ledge.ai
                                                            • Googleが大量の機械学習用データベースを無料公開してた - Qiita

                                                              個人用メモです。 機械学習は素材集めがとても大変です。 でもこの素材集め、実は無理してやらなくても、元から良質な無料データベースがあったようなのです。 URLはこちら YouTube8-M https://research.google.com/youtube8m/explore.html 提供されているサービスは以下の通り 800万個の動画 19億個のフレーム 4800個の分類 使い方はExploreから画像セットを探し、ダウンロードするだけ。 他の方法も見つけた open images dataset 「すごい神だな」と思ったのは これもう完成されてますよね もちろんこの認識前の画像もセットでダウンロードできます。 Youtube-8Mとは、画像数を取るか、精度で取るか、という違いでしょうか。 他にも良い素材集を教えていただきました (はてなブックマーク情報 @sek_165 さん )

                                                                Googleが大量の機械学習用データベースを無料公開してた - Qiita
                                                              • エンジニア・データ分析職の方々にお薦めしたい、LLM時代に不可欠な教養が身に付くテキスト3選 - 渋谷駅前で働くデータサイエンティストのブログ

                                                                (『IT Text 自然語処理の基礎』より) 3ヶ月ほど前に空前のLLMブームについて概観する記事を書きましたが、それ以降も世間のLLMに対する狂騒ぶりは収まるどころかますます拍車がかかるという有様で、あまつさえ僕自身の仕事における日常業務にもじわじわと影響が及びつつあり、今後も良きにつけ悪しきにつけLLMと共生し続ける必要がありそうだと感じている今日この頃です。 そんな猫も杓子もLLMに群がるが如き空前のブームを受けて、エンジニアやデータ分析職の方々の中には「LLMに興味はあるんだけど世の中にあまりにも多くのLLM関連コンテンツが溢れ返っていて何から手をつけたら良いのか分からない」という向きもあるように見受けられます。そこで、僕も断じてLLM以下生成AIの専門家などではないのですが、個人的に「このテキストを読めばLLM時代を生き抜くことが出来そうだ」と感じた書籍を、全くの独断と偏見で3冊

                                                                  エンジニア・データ分析職の方々にお薦めしたい、LLM時代に不可欠な教養が身に付くテキスト3選 - 渋谷駅前で働くデータサイエンティストのブログ
                                                                • 機械学習のパラメータチューニングを「これでもか!」というくらい丁寧に解説 - Qiita

                                                                  はじめに 私はこれまで機械学習のパラメータチューニングに関し、様々な書籍やサイトで学習を進めてきました。 しかしどれもテクニックの解説が主体のものが多く、 「なぜチューニングが必要なのか?」 という目的に関する記載が非常に少なかったため、体系的な理解に苦労しました。 この経験を後世に役立てられるよう、「初心者でも体系的に理解できる丁寧さ!」をモットーに記事にまとめたいと思います。 具体的には、 1. パラメータチューニングの目的 2. チューニングの手順とアルゴリズム一覧 3. Pythonでの実装手順 (SVMでの分類を例に) の手順で解説を進めます。 独自解釈も含まれるため、間違っている点等ございましたら指摘頂けると有難いです。 なお、文中のコードはこちらのGitHubにもアップロードしております。 2021/9/6追記:LightGBMのチューニング実行例追加 以下の記事に、Ligh

                                                                    機械学習のパラメータチューニングを「これでもか!」というくらい丁寧に解説 - Qiita
                                                                  • Python自然言語処理テクニック集【基礎編】

                                                                    自分がよく使用する日本語自然言語処理のテンプレをまとめたものです。 主に自分でコピペして使う用にまとめたものですが、みなさんのお役に立てれば幸いです。 環境はPython3系、Google Colaboratory(Ubuntu)で動作確認しています。 Pythonの標準機能とpipで容易にインストールできるライブラリに限定しています。 機械学習、ディープラーニングは出てきません!テキストデータの前処理が中心です。 前処理系 大文字小文字 日本語のテキストにも英語が出てくることはあるので。 s = "Youmou" print(s.upper()) # YOUMOU print(s.lower()) # youmou 全角半角 日本語だとこちらのほうが大事。 全角半角変換のライブラリはいくつかありますが、自分はjaconv派。 MIT Licenseで利用可能です。 import jaco

                                                                    • 統計・機械学習の理論を学ぶ手順 - Qiita

                                                                      Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 社内向けに公開している記事「統計・機械学習の理論を学ぶ手順」の一部を公開します。中学数学がわからない状態からスタートして理論に触れるにはどう進めばいいのかを簡潔に書きました。僕が一緒に仕事をしやすい人を作るためのものなので、異論は多くあると思いますがあくまでも一例ですし、社員に強制するものではありません。あと項目の順番は説明のため便宜上こうなっているだけで、必ずしも上から下へ進めというわけでもありません。 (追記)これもあるといいのではないかというお声のあった書籍をいくつか追加しました。 数学 残念ながら、統計モデルを正しく用いようと思

                                                                        統計・機械学習の理論を学ぶ手順 - Qiita
                                                                      • 40代プログラミング初心者がpython始めて半年!独学で勉強が続いている理由と読んだ本 - Qiita

                                                                        下で最新版に記事を編集しましたブログを作ったよ ツイッターアカウントフォローお願いします https://twitter.com/usagipycom こんな記事も書いてます 友達がpythonでPCゲームのレベル上げツールを作っていた それを聞いて、pythonって便利なのね。と思いその後色々あってプログラミングを勉強することにした プログラマー35歳までみたいな世の中で40代おそすぎ!ってあるかもしれない PCがあって、無料の教材はネットに転がってるし、本もたくさんあるし、挑戦するのは無料だし2022年の1月ぐらいから勉強を始めた 入門書って成果物がないからつまらないなと思ってそれ以外になんかないかなって本屋さんをふらふらしてたら python自動化 みたいな書籍がいっぱいあることに気がついた なるほど、もしかしたら仕事楽になるんじゃないかそんな思いから次の本を買った シゴトがはかどる

                                                                          40代プログラミング初心者がpython始めて半年!独学で勉強が続いている理由と読んだ本 - Qiita
                                                                        • 凄腕エンジニアさんから学んだ例外の話 - Qiita

                                                                          はじめに 今携わっているプロジェクトで凄腕エンジニアさんと一緒に開発をさせていただいているのですが、その凄腕エンジニアさんから教えていただいた例外の話がとても勉強になり、 さらにこの例外の話を他のプロジェクトのエンジニアさんに伝えたところ、反応が良く、とても勉強になりました!という声をいただけたので、アウトプットしていきたいと思います。 (この記事の中で凄腕エンジニアさんのことはTさんと呼ぶことにします。) ※【凄腕エンジニアさんから学んだ例外の話】の補足 というQiita記事を書きました。 この記事を読み終わった後に疑問が残った人などは補足資料として読んでいただけると嬉しいです。 例外の考え方の源 Tさんの例外の考え方は http://diveintopython3-ja.rdy.jp/your-first-python-program.html#exceptions ↑こちらのPyth

                                                                            凄腕エンジニアさんから学んだ例外の話 - Qiita
                                                                          • Stable Diffusionのフォトリアル系(実写)モデルを紹介 | Murasan Lab

                                                                            今回はStable Diffusionでリアル系イラストを生成できるモデルを紹介します。 Stable Diffusionではどのようなモデルを使用するかによって、生成される画像のクオリティが大きく変わりますので、モデルの選択は重要な要素となります。 本記事で紹介するモデルは、どれも実写と見分けがつかないほどハイクオリティなイラストを生成できますので、ぜひ試してみてください。

                                                                              Stable Diffusionのフォトリアル系(実写)モデルを紹介 | Murasan Lab
                                                                            • Pythonプログラミング入門 - 教材・講義動画

                                                                              G Suiteのドライブ上の課題にアクセスするにはECCSクラウドメール(G Suite)アカウントが必要です。以下のページからECCSクラウドメールアカウントでG Suiteにログイン後にアクセスしてください。 ECCSクラウドメールアカウントはUTokyo Accountの利用者メニューから申請・取得してください。 UTokyo Account ECCSクラウドメール利用方法 個人のGoogle (Gmail)アカウントでログインしている状態ではアクセスできません。必ずログアウトしてからECCSアカウントでログインしなおしてください。

                                                                                Pythonプログラミング入門 - 教材・講義動画
                                                                              • ブラックフライデー&サイバーセール開催! Udemyでは何を買う? 編集部の2021年イチ押しトピック10選 - はてなニュース

                                                                                新型コロナウイルスの影響で、リモートワーク(テレワーク)やオンラインでの学習といった働き方・学び方の大きな変化は2021年も続いています。そんな2021年もあとわずか。やり残したことや学び残したことはありませんか? オンライン学習プラットフォーム「Udemy」では、2021年11月19日(金)~2021年12月1日(水) の間、年間最大のセール「ブラックフライデー&サイバーセール」 を開催します! 対象の講座がなんと1,200円から購入可能になります。 ブラックフライデーセールは11月19日(金)~11月26日(金)、サイバーセールは11月29日(月)〜12月1日(水)の開催です。11月27日(土)〜11月28日(日)はセール対象外なので、ご注意ください。 講座は買い切りなので、おトクなこの期間に気になる講座を購入しておいて、時間ができたときに自分のペースで学んでみるのもいいかもしれません

                                                                                  ブラックフライデー&サイバーセール開催! Udemyでは何を買う? 編集部の2021年イチ押しトピック10選 - はてなニュース
                                                                                • ネットストーカー御用達OSINTツールBlackBirdを触ってみた.pptx

                                                                                  SNSのアカウントを見つけてくれるツール「Blackbird」のレビュースライドです。Read less

                                                                                    ネットストーカー御用達OSINTツールBlackBirdを触ってみた.pptx

                                                                                  新着記事