ディープラーニングによるラーメン二郎全店舗のラーメン画像識別を例に、学習および利用時のインタフェース(Slack、Twitter)に関するノウハウや失敗事例を共有します。 また、ディープラーニングを色々と試した際のノウハウをツール(mxnet-finetuner)としてまとめましたRead less
フリー素材サイト「いらすとや」に出てくる人間風の画像を自動生成するモデルをDeep Learningで作りました。実装にはGoogle製のライブラリ「TensorFlow」と機械学習アルゴリズムの「DCGAN」「Wasserstein GAN」を用いています。 以下は生成された人間画像のうちそれなりにきれいなものの一例です。頬のところが赤くなっていて何となく本家いらすとやの特徴を捉えられていると思います。 「いらすとや」とは? 実装した手法の概要 DCGAN、Wasserstein GANについて Generator Discriminator GeneratorとDiscriminatorの学習 学習や実装の詳細 Generator、Discriminatorのネットワーク構成やパラメーター 訓練データ その他 学習経過 モデルを検証する 入力にバイアスを掛けていい画像を出やすくする ま
なんというか、この結果を見たときは衝撃だった。 時は東京都知事選の結果が世を沸かせ、小池百合子氏が圧勝しメディアで話題になっていた時、ディープラーニングで文章を生成するという人工知能システムのテストのために試行錯誤をしていた、私のコンピュータ端末にこれが現れた。 若者もあり、あるいは才智|逞《たくま》しゅうして役人となり商人となりて天下を動かす者もあり、あるいは智恵分別なくして生涯、飴《あめ》やおこし[#「おこし」に傍点]四文の銭も、己《おの》が職分の何ものたるを知らず、子をばよく生めどもその子を教うるの道を知らず、いわゆる恥も法も知らざる馬鹿者にて、その子孫繁盛すれば一国の益はなさずして、かえって害をなす者なきにあらず。かかる馬鹿者を取り扱うにはとても道理をもってすべからず、不本意ながら力をもって威《おど》し、一時の大害を鎮《しず》むるよりほかに方便あることなし。 これすなわち世に暴政府
家のキュウリが枯れてしまってから知りました。 ある程度パラメータがはっきりすれば 大規模なFPGAで処理できるかもしれません。 12月3日の大垣ミニメーカーズフェアでデジタルフィルタの人と会えたら話してみます。 返信削除
最近(?)ニューラルネット(Neural Network)やらディープラーニング(Deep Learning; 深層学習)やらが流行ってきて、人工知能やらシンギュラリティやら言われるようになって、その中でよく言われるのが「ディープラーニングは人間の脳を模倣してる」とか「特徴量を選ばずに学習できる」とか、そんなことが言われるわけです。 けど、そういったキーワードが一人歩きして、「人工知能は危険だ」論とか、人工知能に対する過剰な期待論がはびこってしまっている気がする。そこで言いたいのが「ディープラーニングは人間の脳を模倣している」と言ってしまうのをやめましょう、という話。 ニューラルネットワークが「人間の脳を模倣」してる話 まず最初に、「ニューラルネットワークが人間の脳を模倣してる」論が、あながち間違ってないよ、ということを話しておきたい。あながち間違ってないんだけど、それでもやめたほうが良い
多層構造のニューラルネットワークによる機械学習、いわゆる「ディープラーニング」の力を使ってグレースケールの画像をカラーに変換させるという試みが行われていて、実際に、白黒時代のアニメの映像をカラー化させたらどうなるかというムービーがYouTubeで公開されています。 Colorful Image Colorization http://richzhang.github.io/colorization/ GitHub - pavelgonchar/colornet: Neural Network to colorize grayscale images https://github.com/pavelgonchar/colornet グレースケール画像をディープラーニングでカラー化する「ディープラーニング自動彩色」プロジェクトを進めているのはRichard Zhang氏ら。もちろん、完全にオリ
前回、おそ松さんたちをディープラーニングで見分けるため、準備編としておそ松さんたちの顔画像を5644枚集めました。 今回はそれを用いて、ディープラーニングで学習させ、判別器を作って検証します。 集めた画像 人物 枚数 例 おそ松 1126 から松 769 チョロ松 1047 一松 736 十四松 855 とど松 729 その他 383 使用フレームワーク 最近GoogleからTensorFlowという新しいディープラーニングのフレームワークが発表されました。 会社のブログに使い方書いたのですが、まだ慣れていないので、今回はchainerを使います。こちらだとすぐに高い成果を上げているImageNetのNINモデル、4層畳み込みニューラルネットワークがサンプルで入っていますので、こちらを改良して使います。 imageNetの使い方は、こちらやこちらを参考にしています。 訓練データセット Im
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く