タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとAlgorithmとsearchに関するyokochieのブックマーク (14)

  • ベクトル検索システムの気持ち

    2025.03.25

    ベクトル検索システムの気持ち
  • 情報検索の基礎 - 共立出版

    あなたが普段使っている検索エンジン、 その真髄は書の中にある! 近年の情報爆発にともなって、膨大な情報から必要な情報を探し出す検索技術が、ますます重要になり、また大きく変化、発展してきた。書は、従来の古典的な情報検索から、最近のウェブの情報検索までの基礎をわかりやすく扱った、網羅的で最先端の入門書である。最初に、文書の前処理、インデックス付け、逆インデックス、重み付け、スコア付け、検索システムの評価といった、情報検索の基礎、特にサーチエンジンに関わる話題をとりあげる。次に、より先進的な話題として、適合フィードバックやクエリー拡張を用いた検索の強化手法、構造化された文書からの情報検索、文書のスコア付けにおける確率論の応用といった話題をとりあげる。その後に、カテゴリー集合への分類問題、クラスタリングの問題といった、様々な形の機械学習と数値手法を取り扱う。最後に、ウェブサーチの問題を扱う。情

    情報検索の基礎 - 共立出版
    yokochie
    yokochie 2012/05/30
    IIRの翻訳本
  • Luceneの曖昧検索を100倍高速化したアルゴリズム - nokunoの日記

    @nobu_k さんのつぶやきでこのエントリを知りました。Changing Bits: Lucene’s FuzzyQuery is 100 times faster in 4.0Luceneで曖昧検索を効率化した話です。 最初の実装では、転置インデックスを全探索して編集距離がN以下の単語を拾っていたレーベンシュタインオートマトンという、編集距離がN以下の単語のみをアクセプトするオートマトンを利用することにした 単語ごとに構築したレーベンシュタインオートマトンをマージするという操作が必要になるが、なかなかうまくいかなかった 難解な論文を見つけたが、実装は難しかった良いライブラリを見つけたので、PythonからJavaに移植した 最後に1つだけ残ったバグは、移植の失敗ではなく元ライブラリのバグだった。報告すると1日で直ってきた。この前のエントリでは、有限状態トランスデューサを使った辞書の圧縮

  • Bayesian Setsによる関連文書検索システムStupa - mixi engineer blog

    都会よりも田舎が好きなfujisawaです。Bayesian Setsというアルゴリズムを使って、関連する文書を高速・高精度に検索できるシステムを作成しましたので、そのご紹介をさせていただきます。 Bayesian Setsとは Bayesian Setsはいくつかアイテムを入力すると、それを補完するようなアイテムを返してくれるアルゴリズムです。原著論文の先頭に"Inspired by Google Sets"と書かれているように、Google Setsを参考にして作成されています。実際にどのような出力が得られるか、Google Setsに以下の表のクエリを検索して試してみますと、 クエリ 出力 apple, banana chocolate, strawberry, vanilla, cherry, ... apple, macintosh software, windows, mac,

    Bayesian Setsによる関連文書検索システムStupa - mixi engineer blog
  • Tokyo TyrantとテーブルDBでリアルタイム検索 - mixi engineer blog

    ドラクエは卒業して、もっと英語漬けをやっているmikioです。さて今回は、データベースサーバTokyo Tyrantとテーブルデータベースを使ってリアルタイム検索システムを構築する方法について語ります。 テーブルDBを分散させたい Tokyo TyrantでもテーブルDBがサポートされているわけですが、これはリアルタイム検索システムへの布石です。テーブルDBは任意のコラムにインデックスを張ることができ、時系列のコラムにインデックスを張ればその値によって古いコラムを効率的に消すことができます。チュートリアルの「Persistent but Expirable Cache」でもその方法を示しています。また、任意のコラムに分かち書きトークン方式もしくは文字N-gram方式で転置インデックスを張ることができます。これらを総合すると、最新のデータのみを保持してサイズと性能を一定に保ったインデックスを

    Tokyo TyrantとテーブルDBでリアルタイム検索 - mixi engineer blog
  • 全文検索を実装したソースコードを読もう (1/4)- @IT

    第6回 全文検索を実装したソースコードを読もう 倉貫 義人 松村 章弘 TIS株式会社 SonicGarden 2009/9/3 優れたプログラマはコードを書くのと同じくらい、コードを読みこなせなくてはならない。優れたコードを読むことで、自身のスキルも上達するのだ(編集部) いよいよオープンソースの社内SNS「SKIP」を使ったコードリーディングも最終回となりました。Railsの基的な構成から、テストコードやRSpecの書き方といった内容に加え、前回はOpenIDをRailsで活用する応用編まで、コードとともに学んできました。 最終回となる今回は、SKIPの目玉機能の1つである全文検索を扱います。最終回にふさわしく、内容も高度なものになっていますが、ここまでおつきあいいただいた読者の皆さまであれば、十分に理解できる内容だと思います。 SKIPにおける全文検索機能では、任意の検索キーワード

  • 転置インデックスを実装しよう - mixi engineer blog

    相対性理論のボーカルが頭から離れないmikioです。熱いわっふるの声に応えて今回はTokyo Cabinetのテーブルデータベースにおける検索機能の実装について語ってみたいと思います。とても長いのですが、最後まで読んだあかつきには、自分でも全文検索エンジンを作れると思っていただければ嬉しいです。 デモ モチベーションをあげていただくために、100行のソースコードで検索UIのデモを作ってみました。Java 6の日語文書を対象としているので、「stringbuffer」とか「コンパイル」とか「倍精度浮動小数」とかそれっぽい用語で検索してみてください。 インデックスがちゃんとできていれば、たった100行で某検索エンジン風味の検索機能をあなたのデータを対象にして動かすことができます。ソースコードはこちら(テンプレートはこちら)です。 でも、今回はUIの話ではないのです。ものすごく地味に、全文検索

    転置インデックスを実装しよう - mixi engineer blog
  • String::Dictionary - naoyaのはてなダイアリー

    String::Dictionary という Perl のライブラリを作ってみました。 http://github.com/naoya/perl-String-Dictionary/tree/master String::Dictionary は検索エンジンその他を作る時に必要になる「辞書」のためのデータ構造 + API です。辞書は単語の集まりですが、これを配列やハッシュなどで持つのではなく、単語をすべて繋げた一つの大きな文字列として保持することでメモリ領域を節約したものです。単語は単に文字列連結で持つだけでなく、Front Coding で圧縮しています。以下簡単な解説です。 辞書は例えば [0] ・・・ jezebel [1] ・・・ jezer [2] ・・・ jezerit [3] ・・・ jeziah [4] ・・・ jeziel ...という風に単語を配列で持つことで実現でき

    String::Dictionary - naoyaのはてなダイアリー
  • Aho Corasick 法 - naoyaのはてなダイアリー

    適当な単語群を含む辞書があったとします。「京都の高倉二条に美味しいつけ麺のお店がある」*1という文章が入力として与えられたとき、この文章中に含まれる辞書中のキーワードを抽出したい、ということがあります。例えば辞書に「京都」「高倉二条」「つけ麺」「店」という単語が含まれていた場合には、これらの単語(と出現位置)が入力に対しての出力になります。 この類の処理は、任意の開始位置から部分一致する辞書中のキーワードをすべて取り出す処理、ということで「共通接頭辞検索 (Common Prefix Search)」などと呼ばれるそうです。形態素解析Wikipediaはてなキーワードのキーワードリンク処理などが代表的な応用例です。 Aho Corasick 法 任意のテキストから辞書に含まれるキーワードをすべて抽出するという処理の実現方法は色々とあります。Aho Corasick 法はその方法のひと

    Aho Corasick 法 - naoyaのはてなダイアリー
  • PDL で PageRank - naoyaのはてなダイアリー

    id:smly さんが PageRank や HITS を Python で実装 されているのに触発されて、自分も PageRank を Perl で実装してみました。 PageRank の計算の中心になるのは Power Method (べき乗法) です。べき乗法では行列とベクトルの積を計算しますので、手軽に使える行列演算ライブラリがあると楽でしょう。 色々調べてみたところ、PDL (The Perl Data Language) が良く使われているようでしたので、これを選択しました。PDL では各種行列演算が簡単に行える他、文字列評価をオーバーライドして行列の文字列出力を良い具合で定義してくれていたりと、なかなかに便利です。PDL は行列計算以外にも色々な科学技術計算やグラフ描写などの操作をサポートしているようです。 さて、PDL を使った PageRank 計算のコードは以下のように

    PDL で PageRank - naoyaのはてなダイアリー
  • 最大マージン kNN と SVM の関係: kNN も最近はがんばっています - 武蔵野日記

    先日書いた機械学習における距離学習の続き。 kNN (k-nearest neighbour: k 近傍法)は Wikipedia のエントリにも書いてある通り、教師あり学習の一つで、あるインスタンスのラベルを周辺 k 個のラベルから推定する手法。memory-based learning と呼ばれることもある。単純に多数決を取る場合もあれば(同点を解決する必要があるが)、近いインスタンスの重みを大きくする場合もあるのだが、いずれにせよかなり実装は単純なので、他の機械学習との比較(ベースライン)として使われることも多い。 簡単なアルゴリズムではあるが、1-NN の場合このアルゴリズムの誤り率はベイズ誤り率(達成可能な最小誤り率)の2倍以下となることが示されたり、理論的にもそれなりにクリアになってきているのではないかと思う。また、多クラス分類がちょっと一手間な SVM (pairwise に

  • Latent Semantic Indexing - naoyaのはてなダイアリー

    情報検索におけるベクトル空間モデルでは、文書をベクトルとみなして線形空間でそれを扱います。この文書ベクトルは、文書に含まれる単語の出現頻度などを成分に取ります。結果、以下のような単語文書行列 (term document matrix) が得られます。 d1 d2 d3 d4 Apple 3 0 0 0 Linux 0 1 0 1 MacOSX 2 0 0 0 Perl 0 1 0 0 Ruby 0 1 0 3 この単語文書行列に対して内積による類似度などの計算を行って、情報要求に適合する文書を探すのがベクトル空間モデルによる検索モデルです。 見ての通り、単語文書行列の次元数は索引語の総数です。文書が増えれば増えるほど次元は増加する傾向にあります。例えば索引語が100万語あって検索対象の文書が 1,000万件あると、100万次元 * 1,000万という大きさの行列を扱うことになりますが、単

    Latent Semantic Indexing - naoyaのはてなダイアリー
  • Wavelet Tree - naoyaのはてなダイアリー

    圧縮全文索引の実装などでしばしば利用される Rank/Select 辞書と呼ばれるデータ構造があります。詳しくは参考文献を参照していただくとして、今回は一般の文字列に対して効率的に Rank/Select を可能とするデータ構造である Wavelet Tree (ウェーブレット木) のライブラリを作りました。 http://github.com/naoya/perl-algorithm-wavelettree/tree/master my $wt = Algorithm::WaveletTree->new("abccbbabca"); is $wt->rank(6, 'a'), 2; is $wt->rank(6, 'b'), 3; is $wt->rank(9, 'b'), 4; is $wt->select(0, 'a'), 0; is $wt->select(1, 'a'), 6;

    Wavelet Tree - naoyaのはてなダイアリー
  • Dynamic Programming による類似文字列マッチの実装例

    Dynamic Programming による類似文字列マッチの実装例 2007-01-22-4 [Programming][Algorithm] 「Modern Information Retrieval」(8.6.1 p.216) での Dynamic Programming (DP) の解説のところのアルゴリズムを 素直に Perl で実装したみた。 さらにマッチ箇所取り出しロジックも実装してみた。 # DP はいわゆる「類似文字列検索(あいまい検索)」に使うと 便利なalgorithm。 実は、大学院でも前の会社でも、PerlやらC++やらで実装して使ってた。 単純ながら使い勝手もよく、まさに現場向きかと。 grep 式に頭から見ていくので計算量的にはイマイチなのだが、 転置インデックス検索などで範囲を絞ってから適用すれば実用上問題ない。 ■定義みたいなの Q1. 二つの文字列 "

    Dynamic Programming による類似文字列マッチの実装例
  • 1