エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
ダウンサンプリングによる予測確率のバイアス - sola
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
ダウンサンプリングによる予測確率のバイアス - sola
機械学習(二値分類問題を考えます)において不均衡なデータセット(クラス間でサンプルサイズが大きく... 機械学習(二値分類問題を考えます)において不均衡なデータセット(クラス間でサンプルサイズが大きく異なる)を扱う場合、多数派のクラスのサンプルに対してサンプリング行い均衡なデータセットに変換するダウンサンプリングが良く行われます。 この不均衡データのダウンサンプリングによって、サンプル選択バイアスが生じることが Calibrating Probability with Undersampling for Unbalanced Classification という論文で説明されています。 具体的には、少数派クラスの事前確率が大きくなります。一般的な問題設定では、正例のクラスが少数派クラスであるので、正例と予測される確率(事後確率)が大きくなります。 予測確率が重要な場合 *1 は特に、このバイアスの影響を除去しなければなりません。 実際、FacebookのCTR予測に関する論文でも、このバイア