タグ

2021年9月4日のブックマーク (2件)

  • 姿勢推定モデル MoveNet を TensorRT でベンチマーク - OPTiM TECH BLOG

    R&D チームの奥村(@izariuo440)です。日で気温が暖かくなると姿勢推定が盛り上がってくるように見えるのは私だけでしょうか?今年の5月に発表された人物姿勢推定モデルの MoveNet v3 をTensorRT でベンチマークしてみました。CPU でもかなり高速推論が可能ですが、CUDA でもっと速く、TensorRT でもっともっと速くなることが確認できました。 MoveNet TFLite モデルを ONNX モデルに変換 ONNX モデルを加工 ベンチマーク結果 まとめ MoveNet MoveNet は高速・軽量・高精度と三拍子揃った人物姿勢推定器です。Lightning/Thunder の二種類があり、前者はより軽量・高速です。詳細は MoveNet.SinglePose Model Card (PDF) や Next-Generation Pose Detection

    姿勢推定モデル MoveNet を TensorRT でベンチマーク - OPTiM TECH BLOG
  • 二分探索アルゴリズムを一般化 〜 めぐる式二分探索法のススメ 〜 - Qiita

    0. はじめに 二分探索法は単純ながらも効果が大きく印象に残りやすいもので、アルゴリズム学習のスタート地点に彩られた花という感じです。二分探索というと「ソート済み配列の中から目的のものを高速に探索する」アルゴリズムを思い浮かべる方が多いと思います。巨大なサイズのデータを扱う場面の多い現代ではそれだけでも十分実用的ですが、二分探索法はもっとずっと広い適用範囲を持っています。 記事では、二分探索法のエッセンスを抽象化して、適用範囲の広い「二分探索法の一般形」を紹介します。同時に無数にある二分探索の実装方法の中でも「めぐる式二分探索」がバグりにくいと感じているので、紹介したいと思います。 注意 1: 二分探索の計算時間について 二分探索の計算時間について簡単に触れておきたいと思います。例えば「$n$ 個の要素からなるソート済み配列から目的の値を探索する」というよく知られた設定であれば、 単純な

    二分探索アルゴリズムを一般化 〜 めぐる式二分探索法のススメ 〜 - Qiita