タグ

algorithmに関するjoan9のブックマーク (11)

  • アルゴリズムの勉強のしかた - きしだのHatena

    この記事で、アルゴリズムの勉強はアルゴリズムカタログを覚えることじゃないよということを書きました。 プログラムの理論とはなにか アルゴリズムの勉強というのは、スポーツで言えば腕立て伏せや走り込みみたいな基礎体力を養うようなもので、「ソートなんか実際に自分で書くことないだろう」とかいうのは「サッカーは腕つかわないのに腕立ていらないだろう」とか「野球で1kmも走ることなんかないのに長距離の走り込みいらないだろう」とか言うようなものです。 Twitterでアルゴリズムの勉強とはなにかと尋ねられて、「アルゴリズムの基的なパターンを知って、それらの性質の分析のしかたをしって、いろいろなアルゴリズムでどのように応用されているか知って、自分が組むアルゴリズムの性質を判断できるようになることだと思います。 」と答えたのですが、じゃあ実際どういうで勉強すればいいか、ぼくの知ってるからまとめてみました。

    アルゴリズムの勉強のしかた - きしだのHatena
  • Purely functional Dijkstra algorithm using priority search queue to find shortest paths

    gistfile1.hs � � �� ��� �� -- % cabal install PSQueue -- % ghci Dijkstra.hs -- > dijkstra sample A -- [(A,0,A),(D,4,A),(E,7,D),(C,8,E),(B,9,E)] module Dijkstra where import Control.Applicative hiding (empty) import Data.List (unfoldr) import Data.Maybe (fromJust) import Data.PSQueue (PSQ, Binding(..)) import qualified Data.PSQueue as PSQ ------------------------------------------------------------

    Purely functional Dijkstra algorithm using priority search queue to find shortest paths
  • アルゴリズムと計算量

    金庫破りと計算量膨張 n 桁の番号をもつ暗証ロックがあるとします。 2 桁であれば 00 〜 99 の 100 個の正解があるわけで、 0 番から順に入力していく解き方では、 最悪の場合は 100 手目に開きます。 99 が正解とは限らないので、平均的にはこれより早く解き終わります。 0 であるときの確率は 1/100 で、このときの手数は 1 手です。 1 であるときの確率は 1/100 で、このときの手数は 2 手です。 2 であるときの確率は 1/100 で、このときの手数は 3 手です。 3 であるときの確率は 1/100 で、このときの手数は 4 手です。 : 99 であるときの確率は 1/100 で、このときの手数は 100 手です。 つまり、平均手数は により、100 手目の約半分です。 ここでいう解き方をアルゴリズムといい、 問題を解くための手数 (てかず) のことを計算

  • Data.mapについて

  • 常識を覆すソートアルゴリズム!その名も"sleep sort"! - Islands in the byte stream (legacy)

    TwitterのTLで知ったのだが、少し前に海外掲示板で"sleep sort"というソートアルゴリズムが発明され、公開されたようだ。このアルゴリズムが面白かったので紹介してみる。 Genius sorting algorithm: Sleep sort 1 Name: Anonymous : 2011-01-20 12:22 諸君!オレは天才かもしれない。このソートアルゴリズムをみてくれ。こいつをどう思う? #!/bin/bash function f() { sleep "$1" echo "$1" } while [ -n "$1" ] do f "$1" & shift done wait example usage: ./sleepsort.bash 5 3 6 3 6 3 1 4 7 2 Name: Anonymous : 2011-01-20 12:27 >>1 なん…だと

    常識を覆すソートアルゴリズム!その名も"sleep sort"! - Islands in the byte stream (legacy)
  • ダイクストラ法, 貪欲アルゴリズム - naoyaのはてなダイアリー

    現実逃避をしながらウェブを眺めていたら ダイクストラ法(最短経路問題) にたどり着きました。単一始点最短路問題におけるダイクストラ法の解説です。 何を思ったのか、図を眺めていたところ動かしたい衝動に駆られて、気付いたらパワポでアニメーションができていました。 http://bloghackers.net/~naoya/ppt/090319dijkstra_algorithm.ppt 実装もしてみました。隣接ノードの表現は、ここではリストを使いました。 #!/usr/bin/env perl use strict; use warnings; package Node; use base qw/Class::Accessor::Lvalue::Fast/; __PACKAGE__->mk_accessors(qw/id done cost edges_to prev/); package Q

    ダイクストラ法, 貪欲アルゴリズム - naoyaのはてなダイアリー
  • ダイクストラ法(最短経路問題)

    ダイクストラ法 (Dijkstra's Algorithm) は最短経路問題を効率的に解くグラフ理論におけるアルゴリズムです。 スタートノードからゴールノードまでの最短距離とその経路を求めることができます。 アルゴリズム 以下のグラフを例にダイクストラのアルゴリズムを解説します。 円がノード,線がエッジで,sがスタートノード,gがゴールノードを表しています。 エッジの近くに書かれている数字はそのエッジを通るのに必要なコスト(たいてい距離または時間)です。 ここではエッジに向きが存在しない(=どちらからでも通れる)無向グラフだとして扱っていますが, ダイクストラ法の場合はそれほど無向グラフと有向グラフを区別して考える必要はありません。 ダイクストラ法はDP(動的計画法)的なアルゴリズムです。 つまり,「手近で明らかなことから順次確定していき,その確定した情報をもとにさらに遠くまで確定していく

  • 2008-10-25 - きしだのはてな - アルゴリズムデザインの夢

    なんか、今日、アルゴリズムデザインを読む夢をみてた 夢の中で、id:kiwanamiの人が「これを読んでアルゴリズムを覚えても、全部はどうせ覚えられないから意味がない」などと言ってた。 実物のid:kiwanamiは、もちろんそういうことを言う人ではなく、むしろ逆に、そういうことを言われたときに説明をする側なので、どうしてその発言がid:kiwanamiにマッピングされたのかというのは面白いのだけど、最近よく話をするのがid:kiwanamiなので、手近なところがでてきただけというのが有力なんだと思う。 まあ、それはいいとして、実際問題、アルゴリズムデザインに対して「これを読んでアルゴリズムを覚えても、全部はどうせ覚えられないから意味がない」ということを思う人はいるのではないかと思う。 まあ、これは夢の中のセリフなので、現実的に考えると、「アルゴリズムを勉強しても、どうせ代表的なアルゴリズ

    2008-10-25 - きしだのはてな - アルゴリズムデザインの夢
  • 著名ソーシャルメディアが使っているアルゴリズムを大公開! | Moz - SEOとインバウンドマーケティングの実践情報

    “アルゴリズム”は、もっとも非人間的なものの代表だともいえる。ソーシャルメディアにとって、そのアルゴリズムが不可欠だというのは、実に皮肉めいている。 僕はこの間、グーグルがどうやってユーザーデータを集めているかについて書いた記事を掲載した(前編、後編)。今回は、著名なソーシャルメディアサイトが、ユーザーデータを活用する上でどのようにアルゴリズムを用いているのか、白日の下にさらそう。 ソーシャルメディアを成り立たせているのは人間の力だが、ユーザーが入力したデータを利用できる状態にする仕組みは、アルゴリズムによって作られている。現在活動している無数のソーシャルメディアサイトで実証済みのことだが、ユーザーの関与とアルゴリズムによる処理ルールの上手いバランスを見出すことは、とても難しくなりがちだ。これから紹介するアルゴリズムは、悪意のないユーザーと結びついて初めてうまくいくものだ。 人気ソーシャル

    著名ソーシャルメディアが使っているアルゴリズムを大公開! | Moz - SEOとインバウンドマーケティングの実践情報
  • Mastering Algorithms with Perl : 404 Blog Not Found

    2006年11月02日19:00 カテゴリ書評/画評/品評 Mastering Algorithms with Perl 定番アルゴリズムを徹底理解!:ITproが もブクマされておりますが、それよりもこちらの方がおすすめ。 Mastering Algorithms With Perl J. Orwant / J. Hietaniemi / J. MacDonald 以前404 Blog Not Found:Hash != Associative Arrayでもちょこっと紹介しましたが、ここで改めて紹介しておきます。 書"Mastering Algorithms with Perl"には「定番アルゴリズムを徹底理解!」のアルゴリズムは全て載っている上、それぞれのベンチマークもちゃんと取ってます。"with Perl"とありますが、Perl色はそれほど強くないので、他のLLのユーザーにも役

    Mastering Algorithms with Perl : 404 Blog Not Found
  • アルゴリズムの紹介

    ここでは、プログラムなどでよく使用されるアルゴリズムについて紹介したいと思います。 こんなことやって意味あるのかどうか正直言って迷いました。プログラマはたいてい知っているような内容だし見る人もいないんじゃないかと思いましたが、これからプログラミングを始めてみようという方にとっては参考になるかもしれないし、何よりも自分にとって頭の中を整理できたりするので、これから定期的にやっていこうかと考えてます。 ところで、紹介する内容はほとんど過去に出版された書物関係から抜粋しています。一応下の方に参考文献として挙げておきますので興味を持たれた方は書店などで探してみてはいかがでしょうか? ということで、まずはライン・ルーチン(画面に直線を描画する)についての紹介です。

  • 1