タグ

algorithmとrecommendationに関するhiromarkのブックマーク (11)

  • 捗るリコメンドシステムの裏事情(ハッカドール)

    東京大学 松尾研究室が主催する深層強化学習サマースクールの講義で今井が使用した資料の公開版です. 強化学習の基礎的な概念や理論から最新の深層強化学習アルゴリズムまで解説しています.巻末には強化学習を勉強するにあたって有用な他資料への案内も載せました. 主に以下のような強化学習の概念やアルゴリズムの紹介をしています. ・マルコフ決定過程 ・ベルマン方程式 ・モデルフリー強化学習 ・モデルベース強化学習 ・TD学習 ・Q学習 ・SARSA ・適格度トレース ・関数近似 ・方策勾配法 ・方策勾配定理 ・DPG ・DDPG ・TRPO ・PPO ・SAC ・Actor-Critic ・DQN(Deep Q-Network) ・経験再生 ・Double DQN ・Prioritized Experience Replay ・Dueling Network ・Categorical DQN ・Nois

    捗るリコメンドシステムの裏事情(ハッカドール)
  • グラフラプラシアンで推薦

    以前縁あって小町さんと一緒に仕事をさせてもらい論文に名前を載せてもらったのですが、会社だけでなく自宅でもちょっと使いたいなーということもあり、実装してみることにしました。 参考にしたのは以下の論文です。 ラプラシアンラベル伝播による検索クリックスルーログからの意味カテゴリ獲得 元論文と違うのは、インスタンス-パターン行列の要素を単純な頻度から別の尺度に変えている点です。 元々そのまんま実装してみたところ、非常にレアな場合なのですが、ジェネリックパターン1つのみと共起するようなインスタンスがあった場合に、これが上位に出やすくなるという問題が発生し、どうにかできないかなと模索していたところ、小町さんからアドバイスを頂き、それを基に手を加えています。 とりあえず動作検証のためにMovieLens Data Setsを使って実験してみました。 最初にデータのフォーマットをツールの入力形式へ変更。

  • Bayesian Setsを試してみた - のんびり読書日記

    この前YAPC Asia 2009に参加してきたのですが、そこで「はてなブックマークのシステムについて」の発表の中で、「はてブの関連エントリはBayesian Setsを使って計算されている」という話を聞いてBayesian Setsに俄然興味が湧いてきました。Bayesian Setsは以前論文だけ少し読んで、あまりよく分からないまま放置していたのですが、せっかくなのでPerlで作って試してみました。 Bayesian Setsについて詳しくは、以下のリンク先の資料をご参照下さい。 Bayesian Setsの論文 Bayesian Setsの詳しい説明記事 bsets, The Bayesian Sets algorithm. (Matlabのコード) 実際に作成したコードは以下の通りです。上記のMatlabのコードを参考にさせていただいています。 #!/usr/bin/perl #

    Bayesian Setsを試してみた - のんびり読書日記
    hiromark
    hiromark 2009/09/24
    おお、結構いい感じ。
  • LSH その1 -LSHの種類-|JAVAでデータマイング!

    JAVAでデータマイング!『情報工学の難しいそうなアルゴリズムをJAVAで実装して、ひたすらその結果を公開する』ブログになる予定。エンジニア/学び・教育 LSH

    hiromark
    hiromark 2009/09/24
    ちょっと深追いしてみたい。
  • netflix prize is over, 時間経過による嗜好性の変化 - DO++

    米国のオンラインDVDレンタルサービス「Netflix」が、現在利用しているレコメンデーションシステムの性能をはじめに10%改善したチームに100万ドルの賞金を与えるという触れ込みで始まったnetflix prizeは当初の予想よりも時間がかかったが、つい最近最初からトップを走り続けていたbellkorと、上位陣のコラボレーションのチームが10%の壁を破った(leaderboard)。 彼らの手法は「非常に多くの様々な種類のレコメンデーションシステムの結果を混ぜ合わせる」という愚直だがいかにも精度が出そうだという方法を採用している(、と昨年度の結果からは思われる。近々詳細は出るだろう。) 実際に使ってとどめになったかどうかは分からないが、彼らのチームの主要メンバーがKDDで新しい手法を発表しており、単一の手法による最高精度を達成している。ちなみに今年のKDD(データマイニング系の学会の最高

    netflix prize is over, 時間経過による嗜好性の変化 - DO++
    hiromark
    hiromark 2009/07/28
    これは面白そうな論文。読む。
  • [O] 神嶌敏弘「推薦システムのアルゴリズム」

    « 脳年齢テスト 整数の瞬間記憶 | トップページ 神嶌敏弘「推薦システムのアルゴリズム」 [日記] 神嶌敏弘さんの「推薦システムのアルゴリズム」を、人工知能学会誌を借りて通読しはじめたところです。 - 人工知能学会誌:目次 -- http://www.ai-gakkai.or.jp/jsai/journal/contents/ - Vol.22 No.1(2007年1月) - Vol.23 No.1(2008年1月) - Vol.23 No.2(2008年3月) に掲載されており、全部で40ページ以上。 なんで急に読み始めたのかというと、ある疑問が湧いたからです。 以下のようなコンテストが開催され、人工知能学会も協賛してるみたいなので、楽しいかもなと興味をもったのです。 - リコメンデーションコンテスト -- http://kgmod.jp/contest/ # 参

    hiromark
    hiromark 2009/07/10
    なんかすごい面白そう。
  • steps to phantasien(2008-08-14) Netflix Prize 外野席

    "集合知プログラミング" というが出たらしい. 私の積読には元の "Programming Collective Intelligence" があって, 途中まで読んだまま放置していたら日語訳が出てしまった. (オライリーのアンチパターンと命名.) 悔しいのでは処分. そのうち日語版で続きを読もう.... 興味を持っていたのは推薦エンジン(協調フィルタ)だった. 私の中では検索エンジンに匹敵するウェブのハイテクという位置付けなんだけど, 草の根には普及しておらず悲しい. 検索エンジンでの Hyper Estraier や senna に相当する協調フィルタの立ち位置は デッドヒートが予想される...とだいぶ前から思ってるんだけど, いまのところ閑古鳥気味. まったく, 出し抜くだけの実力があればなあ. 先の皇帝ペンギンでは, 一章にさっそく協調フィルタが登場する. 読んでみると

    hiromark
    hiromark 2009/03/03
    調査中。
  • HatebuFriends の仕組み - もしかして: blog.iron’s.jp

    学生時代に研究・卒論からの現実逃避の一環で作り、去年の10月頃公開(1度移転)した HatebuFriends について今更書いてみたいと思います。 HatebuFriends とは はてなブックマークのブックマーク情報を利用して、好みが似ているユーザや、興味がありそうなページを推薦します。 棒グラフをクリックすると共通のブックマーク一覧が表示されます。同じページをブックマークしたユーザをハイライトすることもできます。 興味がありそうなページを推薦してくれる機能もあります。 人によって精度の差はあると思いますが、自分ではいい感じに推薦されてきていると思っています。 ユーザ間の関連度計算 同じページをブックマークしていることが多いユーザ同士は、似た嗜好を持っていると考えられます。 特に、ブックマークユーザ数が少ないページのほうが、誰もがブックマークするようなページよりも、ブックマークが

    hiromark
    hiromark 2008/12/29
    あ、意外とシンプル。だけど結構面白いのですよね、これ。
  • くさもち研究室生活ブログだったもの LSHまとめ(1)

    LSHは近似最近傍探索(Approximate Nearest Neighbor)アルゴリズムの一つ. 近似最近傍探索とは,簡単に言うとクエリqから半径(1+ε)内にある点vを探索すること. つまり,半径(1+ε)の点のうち,どれか1つでも探索できればおk. 言葉の意味そのままに最近傍探索(Nearest Neighbor)の条件を少し緩くした探索といえる. (実は,特徴ベクトルの次元がd=2の場合なら,ボロノイ図を使えば近似最近傍探索ができる) LSHはハッシュ関数を用いた確率的探索で近似最近傍探索を解く. そう,実はハッシュ関数を用いるということ以上に確率的探索ということに大きな意味がある.(これが自分にとってはかなりやっかいな問題) LSHでは,クエリqと近傍(半径(1+ε)以内)にある点ではハッシュ値が一致する確率が高く, クエリqと遠い位置にある点ではハッシュ値が一致する確率が低

    hiromark
    hiromark 2008/12/25
    LSH の概要がわかりやすくまとまっている。
  • GoogleNewsのレコメンドの中身 - UMEko Branding

    先日、全体ゼミで発表したときの内容ですが、ここにまとめときます。。GoogleNewsのレコメンドの中身を追った論文の要約です。少し前の全体ゼミで用いた資料です。ソース:Abhinandan Das,Mayur Datar,Ashutosh Garg,Shyam Rajaram,"Google News Personalization: Scalable OnlineCollaborative Filtering",WWW2007不勉強な個所が多々ありますので、誤っている箇所等ありましたら、是非ご指摘ください。 個人的には、最近のモデルベースの手法の勉強・おさらいという意味で用いているので、GoogleNews独自の拡張なり実装の部分の内容が省かれている場合があります。また、データ構造やMapReduceを用いた計算の仕組みの部分は、ここでは省略しています。。一応、 全体像 ・LSH(Lo

    hiromark
    hiromark 2008/12/22
    GooleNews で使われているアルゴリズムの概説。"LSH(Local Sensitivity Hashing),PSLA, Co-Visitationという3つのレコメンド器の線形和"。論文読んだ。実践的な内容。
  • 楽天も情報爆発しています - 武蔵野日記

    楽天テクノロジーカンファレンスには行かれなかったのだが、大規模分散処理フレームワークの設計、実装が進行中 -- 楽天MapReduce・HadoopはRubyを活用などを読むと、けっこうおもしろそうだったのだな、と分かる。 楽天技術研究所がどういう位置づけなのかは分からないが、こういう基盤技術の開発を支援しているというのは評価していいと思う。(車輪の再発明という気がしないでもないが) 個人的な興味としては楽天が大規模データに対してどういうことをしているかということなのだが、記事を見るといろいろ書いてある。 計算モデルがシンプルでも規模が巨大になるとまったく別の問題が生まれてくる。処理すべき情報量が爆発的に増加しているからだ。 例えば協調フィルタリングではユーザーを縦軸に、商品アイテムを横軸にした購買履歴マトリックスについて計算処理を行う必要があるが、あまりに量が多く、素直に実装すると「2

    楽天も情報爆発しています - 武蔵野日記
    hiromark
    hiromark 2008/12/05
    コメント欄が熱い!
  • 1