タグ

ブックマーク / qiita.com/icoxfog417 (11)

  • FacebookのfastTextでFastに単語の分散表現を獲得する - Qiita

    「フランス」-「パリ」+「東京」=「日」 こんな単語同士の演算ができる、と話題になったのがGoogleが発表したWord2Vecです。これは端的に言えば単語を数値で表現する技術で、これにより単語同士の「近さ」を測ったり、上記のような演算をすることが可能になります。この、単語を数値表現にしたものを分散表現と呼びます。 今回紹介するFacebookの発表したfastTextはこのWord2Vecの延長線上にあるもので、より精度が高い表現を、高速に学習できます。稿ではその仕組みと日語文書に対しての適用方法について解説していきます。 fastTextの仕組み fastTextでは、Word2Vecとその類型のモデルでそれまで考慮されていなかった、「活用形」をまとめられるようなモデルになっています。具体的には、gogoes、そしてgoing、これらは全て「go」ですが、字面的にはすべて異なる

    FacebookのfastTextでFastに単語の分散表現を獲得する - Qiita
  • 大自然言語時代のための、文章要約 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? さまざまなニュースアプリ、ブログ、SNSと近年テキストの情報はますます増えています。日々たくさんの情報が配信されるため、Twitterやまとめサイトを見ていたら数時間たっていた・・・なんてこともよくあると思います。世はまさに大自然言語時代。 *from [THE HISTORICAL GROWTH OF DATA: WHY WE NEED A FASTER TRANSFER SOLUTION FOR LARGE DATA SETS](https://www.signiant.com/articles/file-transfer/the-

    大自然言語時代のための、文章要約 - Qiita
  • Pythonを書き始める前に見るべきTips - Qiita

    Pythonを使ってこの方さまざまな点につまずいたが、ここではそんなトラップを回避して快適なPython Lifeを送っていただくべく、書き始める前に知っておけばよかったというTipsをまとめておく。 Python2系と3系について Pythonには2系と3系があり、3系では後方互換性に影響のある変更が入れられている。つまり、Python3のコードはPython2では動かないことがある(逆もしかり)。 Python3ではPython2における様々な点が改善されており、今から使うなら最新版のPython3で行うのが基だ(下記でも、Python3で改善されるものは明記するようにした)。何より、Python2は2020年1月1日をもってサポートが終了した。よって今からPython2を使う理由はない。未だにPython2を使う者は、小学生にもディスられる。 しかし、世の中にはまだPython3に

    Pythonを書き始める前に見るべきTips - Qiita
  • 機械学習の論文を読んでみたいけど難しそう、という時に見るサイト - Qiita

    機械学習の基礎はそれなりに習得し、次のステップとして論文を読んでみたい、実装にチャレンジしてみたい、という方も多いのではないかと思います。 ただ、機械学習の論文といってもどこから読んでいいのか、興味がある論文を見つけるにしても英語のAbstractを眺めて行くのはちょっとつらい・・・という方のために、ポータルサイトを作りました。 arXivTimes Indicator 以前、機械学習に関わる論文の要約を共有するGitHubリポジトリとBotを作成したのですが、そこでの投稿内容をまとめて見ることができます。 ジャンル別に参照可能な他、 Pocketをお使いであればPocketへの登録も可能です。 arXivTimesは、機械学習の研究動向に関する集合知を形成することを目的としています(日語で参照可能な)。 そのため、今回のポータルの作成を機により多くの投稿をしてもらい、また要約の質を高め

    機械学習の論文を読んでみたいけど難しそう、という時に見るサイト - Qiita
  • GitHub APIから学ぶ次世代のAPI実装方式GraphQL - Qiita

    最近公開されたGitHubAPIは、GraphQLという形式に対応しました。今後はこちらが主流になっていくようで、既存のREST APIからGraphQLへのマイグレーションガイドも提供されています。 今回は、このGraphQLについて、実際にGitHubAPIを叩きながらその仕組みを解説していきたいと思います。 GraphQLとは 歴史 GraphQLは、Facebookの中で2012年ごろから使われ始めたそうです。その後2015年のReact.js Confで紹介されたところ話題となり、同年"technical preview"のステータスでオープンソースとして公開されました。その後仕様が詰められ、2016年9月に晴れて"preview"を脱し公式実装として公開されました。これと同じタイミングで、GitHubからGraphQLバージョンのAPIが公開されています。 このあたりの経緯

    GitHub APIから学ぶ次世代のAPI実装方式GraphQL - Qiita
  • 人工知能時代の音楽制作への招待 - Google Magenta 解説&体験ハンズオン (自習編) - - Qiita

    音楽制作を行っていて人工知能技術に興味がある、あるいは機械学習をやっていて音楽が好きだ!そんな方に送る、機械学習による音楽生成のチュートリアル資料となります。記事のみで、仕組みの理解から実際に音楽を生成して、SoundCloudで共有するまでの手順を網羅しています。 そして、記事は先日実施した人工知能時代の音楽制作への招待 - Google Magenta 解説&体験ハンズオン -の自習用資料でもあります。 イベント自体は100名を超える方(開催前日の段階で倍率が5倍)に応募いただき、行きたかったけど行けなかった!という方も多いかと思うので、自習編にて内容に触れていただければと思います。 ※なお、会場のキャパを広げられなかった代わりに撮影をしていただいたので、後日講義動画が上がればそちらも掲載させていただきます。 ゴール 音楽生成とはそもそもどういう仕組みで、どんなアプローチが取られて

    人工知能時代の音楽制作への招待 - Google Magenta 解説&体験ハンズオン (自習編) - - Qiita
  • 「わかりやすさ」に注目した、機械学習による技術ブログの検索 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 新しい技術を身に付けたい!と思って検索をしても、検索上位に来る記事が「わかりやすい」かというとそうではない、ということはよくあります。 記事のビュー数、またQiitaのいいね数やはてブ数は、この参考にはなりますが体感として高ければいいというものでもない印象です。 そこで、こうした文章の「評判」だけでなく、文章そのものの構成や書き振りなどに注目して、その「わかりやすさ」を評価できないか?ということで実験的に行ってみたものが以下の「Elephant Sense」になります。 chakki-works/elephant_sense (Star

    「わかりやすさ」に注目した、機械学習による技術ブログの検索 - Qiita
  • 機械学習の環境を構築するのにAnacondaをインストールする必要はない。Minicondaを使おう - Qiita

    Python機械学習の環境を作る、というと山のように「Anacondaをインストールせよ」という記事が出てきますが、実際環境構築はMinicondaというAnacondaの最小構成版で十分です。 ということを伝える記事です。 最速で機械学習の開発環境を作る方法 基は以下で十分です。 Minicondaをインストールする(※もちろんPython3の方をインストールして下さい) conda create -n ml_env numpy scipy scikit-learn matplotlib jupyterで開発環境を作成 activate ml_envで作成した開発環境を有効化 実際はMacWindowsかなどで微妙な差異があるので、詳細はこちらを参照して下さい。 Python機械学習アプリケーションの開発環境を構築する また、開発環境を作成するcondaコマンドの使い方については

    機械学習の環境を構築するのにAnacondaをインストールする必要はない。Minicondaを使おう - Qiita
  • 実サービスでの機械学習の活用に関するサーベイ - Qiita

    機械学習の仕組みはわかったけど、実際のサービスではどういう風に使われているんだろう? 学習の環境って、自前でGPUを買っているんだろうか。それともクラウドが主流なんだろうか? というような実務における利用方法や開発に関する疑問は、誰しも一度は抱いたことがあるのではないかと思います。私自身疑問に思っていて、実務への活用を考えている方向けの講習を担当するにあたり、思い切ってアンケートを取ってみました。 対象は実務で機械学習を利用している方で、32の回答を得ることができました(ご回答頂いた方、ありがとうございました!)。なお、回答はTwitter/Facebookなどで募ったため、サンプリングバイアスが存在する可能性がある点についてはご留意を願います。 以下で、その結果について所見を交えながら公開をしたいと思います。 ※生のアンケート結果も公開したかったんですが、自由記述の回答にプライバシー的な

    実サービスでの機械学習の活用に関するサーベイ - Qiita
  • TensorFlowを算数で理解する - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? TensorFlowは主に機械学習、特に多層ニューラルネットワーク(ディープラーニング)を実装するためのライブラリになりますが、その基的な仕組みを理解するのにそうした難しい話は特に必要ありません。 記事では、TensorFlowの仕組みを、算数程度の簡単な計算をベースに紐解いていきたいと思います。 TensorFlowの特徴 初めに、TensorFlowの特徴についてまとめておきたいと思います。 TensorFlowは、その名前の通りTensor(多次元配列、行列などに相当)のFlow(計算処理)を記述するためのツールです。その特徴

    TensorFlowを算数で理解する - Qiita
  • 論文読み: Building and Learning from a Contextual Knowledge Base for a Personalized Pyhsical Therapy Coach - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? Building and Learning from a Contextual Knowledge Base for a Personalized Pyhsical Therapy Coachのまとめ 要約 相手に合わせた対話(=対話のpersonalize)を行うために、対話における文脈情報(Contextual Knowledge Base = CKB)を活用しよう、というのが論旨。「対話における文脈情報(CKB)」とは、ユーザーの発話以外にも、センサーからの情報(どういう姿勢なのか、どういう動きをしているかなど)からも得られる。

    論文読み: Building and Learning from a Contextual Knowledge Base for a Personalized Pyhsical Therapy Coach - Qiita
  • 1