並び順

ブックマーク数

期間指定

  • から
  • まで

281 - 320 件 / 1222件

新着順 人気順

physicsの検索結果281 - 320 件 / 1222件

  • 時間が後ろに向かって流れる「ミラー・ユニバース」が存在するという主張

    私たちが生きる宇宙とは別の宇宙「パラレルワールド」が存在するという考えは古くから存在しますが、近年はパラレルワールドの1つとして「ミラー・ユニバース」が注目を集めています。ビッグバンを中心として私たちの世界とは時間も何もかもが逆向きに存在するミラー・ユニバースについて、科学メディアのGuardian Magazineが解説しています。 Some Physicists Believe there's a 'Mirror Universe' in which Time moves Backwards https://www.guardianmag.press/2021/04/some-physicists-believe-theres-mirror.html Why some physicists really think there's a 'mirror universe' hiding

      時間が後ろに向かって流れる「ミラー・ユニバース」が存在するという主張
    • 「存在し得ないモノ」とブラックホールが衝突か

      「存在し得ないモノ」とブラックホールが衝突か2020.07.01 23:00179,083 George Dvorsky - Gizmodo US [原文] ( 山田ちとら ) 宇宙物理学界を揺るがす大ニュース。 ブラックホールがなにか得体の知れない天体と衝突した!との新しい研究が発表されました。 6月23日付で『The Astrophysical Journal Letters』に掲載された論文によれば、地球からおよそ800万光年離れているブラックホールがなにがしかの天体とぶつかり、その衝撃が重力波となってアメリカのLIGOとイタリアのVirgo干渉計に届いたそうです。 以下、ブラックホール(中央の大きな黒い円)が謎の天体(ブラックホールのまわりを螺旋状に落ちていく小さな影)を飲みこむ様子と、その衝撃が重力波となって伝わってくる様子を再現した映像をご覧ください。 Max-Planck-I

        「存在し得ないモノ」とブラックホールが衝突か
      • SPADセンサー | キヤノングローバル

        これからの社会をいままで以上に豊かにすると期待されるキーデバイスが、光を電気信号に変換する「センサー」です。キヤノンは、暗闇でもフルHD(約207万画素)を超える世界最高※1の320万画素のカラー撮影が可能な超小型(13.2mm × 9.9mm)のSPADセンサーの開発に成功しました。 ※1 映像撮影用のSPADセンサーにおいて。2023年7月31日現在、キヤノン調べ 2023/10/16 SPAD (Single Photon Avalanche Diode) センサーは、イメージセンサーの一種です。イメージセンサーといえば、カメラなどに搭載されるCMOSセンサーを思い浮かべますが、SPADセンサーはCMOSセンサーと原理が異なります。 光に粒子の性質があるとことを利用するのは同じであるものの、CMOSセンサーがある一定時間に画素にたまった光の量を測るしくみに対し、SPADセンサーは、画

          SPADセンサー | キヤノングローバル
        • 微生物を「物理攻撃」で99%死滅させるナノコーティング素材が登場、薬剤耐性菌も殺せるのに人体には無害

          医療ではなく工業の分野で脚光を浴びてきた素材の薄膜をコーティングすることで、病原体となるバクテリアや真菌の細胞を破壊することができる技術が開発されました。このナノコーティング技術は、抗生物質が効かない薬剤耐性菌(スーパーバグ)にも有効な上に人体には無害なため、傷口に貼る創傷被覆材や医療用器材を体内に埋め込むインプラントの素材として有望視されています。 Broad-Spectrum Solvent-free Layered Black Phosphorus as a Rapid Action Antimicrobial | ACS Applied Materials & Interfaces https://pubs.acs.org/doi/10.1021/acsami.1c01739 Superbug Killer: New Nanotech Destroys Bacteria and F

            微生物を「物理攻撃」で99%死滅させるナノコーティング素材が登場、薬剤耐性菌も殺せるのに人体には無害
          • 最近の魚雷は直撃を目的としない超進化を遂げていた話→「知らなかった」「そっちの方が強いんだ」

            🥞防人うぃ🥞 @ui_Kitayama @admiral_anriMk2 気になっていくつか調べてみたら少なくても2013年以前には既に採用されていて側面に当てて爆発させる艦これでお馴染みの魚雷だと空中にエネルギーの一部が流れてしまうので底面で爆発させる事によりエネルギーを最大限使って相手を撃破するみたいです 2024-03-02 18:12:07

              最近の魚雷は直撃を目的としない超進化を遂げていた話→「知らなかった」「そっちの方が強いんだ」
            • 天の川銀河中心のブラックホールの撮影に初めて成功 | 国立天文台(NAOJ)

              史上初の天の川銀河中心のブラックホールの画像。これは、私たちが住む天の川銀河の中心にある巨大ブラックホール、いて座A*の姿を初めて捉えた画像です。この天体がブラックホールであるということを初めて視覚的に直接示す証拠です。地球上の8つの電波望遠鏡を繋ぎ合わせて地球サイズの仮想的な望遠鏡を作るイベント・ホライズン・テレスコープ(EHT)によって撮影されました。望遠鏡の名前は、光すらも脱出することのできないブラックホールの境界である「イベント・ホライズン(事象の地平面)」にちなんで名付けられました。ブラックホールは光を放たない完全に漆黒の天体であり、そのものを見ることはできません。しかし周囲で光り輝くガスによって、明るいリング状の構造に縁取られた中心の暗い領域(「シャドウ」と呼ばれます)としてその存在がはっきりと映しだされます。今回新たに取得された画像は、太陽の400万倍の質量を持つブラックホー

                天の川銀河中心のブラックホールの撮影に初めて成功 | 国立天文台(NAOJ)
              • ゼルダの伝説のバグを解消するため任天堂がとった方法が、ほぼ天地創造と一緒だった「もはや神様で草」

                AUTOMATON(オートマトン) @AUTOMATONJapan 【ニュース】『ゼルダの伝説 ティアーズ オブ ザ キングダム』開発当初のカオス状態映像にみんなほっこり。任天堂でもはじめは失敗する automaton-media.com/articles/newsj… pic.twitter.com/2mPQZAafxA 2024-05-24 18:53:26 リンク AUTOMATON 『ゼルダの伝説 ティアーズ オブ ザ キングダム』開発当初のカオス状態映像にみんなほっこり。任天堂でもはじめは失敗する - AUTOMATON 『ゼルダの伝説 ティアーズ オブ ザ キングダム』開発初期の“カオス”な状況が紹介。当初には試行錯誤があったことに関心が寄せられているようだ。 230 users 1

                  ゼルダの伝説のバグを解消するため任天堂がとった方法が、ほぼ天地創造と一緒だった「もはや神様で草」
                • Togetter - 国内最大級のTwitterまとめメディア

                  いま話題のツイートまとめが読めるTwitterまとめに特化したまとめサイト。人気のツイートやTwitterトレンド、写真やマンガといった話題の画像から、さまざまなニュースの反応まで、みんなであつめる国内最大級のメディアプラットフォームです。

                    Togetter - 国内最大級のTwitterまとめメディア
                  • 重力を媒介する未発見の粒子「重力子」に似たものが見つかる Nature誌で論文発表、半導体使った実験で【研究紹介】

                    TOPコラム海外最新IT事情重力を媒介する未発見の粒子「重力子」に似たものが見つかる Nature誌で論文発表、半導体使った実験で【研究紹介】 中国の南京大学、米コロンビア大学、ドイツのミュンスター大学、米プリンストン大学に所属する研究者らが発表した論文「Evidence for chiral graviton modes in fractional quantum Hall liquids」は、重力を媒介すると考えられている「重力子」に似たものを半導体から発見した研究報告である。 ▲論文のトップページ(スクリーンショット画像) アインシュタインの一般相対性理論によると、重力は時空の歪みによって生じるとされる。一方、量子力学の枠組みでは、力を媒介するのは粒子であり、重力の場合は「重力子」と呼ばれる仮説上存在する粒子が媒介すると考えられてきた。しかし、長年の探索にもかかわらず、宇宙空間で重力

                      重力を媒介する未発見の粒子「重力子」に似たものが見つかる Nature誌で論文発表、半導体使った実験で【研究紹介】
                    • 「過去」を25%の確率で変える逆方向タイムトラベルのシミュレーションにケンブリッジ大学の研究チームが成功

                      イギリス・ケンブリッジ大学の研究チームが、「量子もつれ」と呼ばれる現象を利用することで、量子力学の世界において、25%の確率で過去に起こった事象を未来で変えることができるシミュレーションに成功したと発表しました。 Phys. Rev. Lett. 131, 150202 (2023) - Nonclassical Advantage in Metrology Established via Quantum Simulations of Hypothetical Closed Timelike Curves https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.150202 Scientists Successfully Simulate Backward Time Travel with a 25% Chance of

                        「過去」を25%の確率で変える逆方向タイムトラベルのシミュレーションにケンブリッジ大学の研究チームが成功
                      • 物理Linuxサーバ構築用にThinkCentre M75q Tiny Gen2を購入 - Magnolia Tech

                        普段、メインで使っているPCがMacBook Air 2018なので、さすがにDockerでコンテナをたくさん立ち上げたまま、ブラウザで調べ物する、みたいな使い方が辛くなってきた。夏場はファンも凄い回っちゃうし、レスポンスはすごく悪くなるし。 メインPCを買い替えようかとも思ったけど、ブラウザを使うくらいの作業なら特に不満は無い。それにそもそもメインPCでLinuxが動いている必然性も無いし、画面も要らないのでサブPCとしてデスクトップPCを用意して、Linuxをインストールする方に方向に転換。 部屋に大きなデスクトップが有るとサイズ的に圧迫感が有るし、複数のマシンのファンの音が同時に鳴るのは苦手なので(データセンタではないので...)、作業している場所から離れた所の隙間に設置できるような、1リットルサイズの小型PCを探すことにした。 Amazonとかで探すと色々と出てくるけど、それなりの

                          物理Linuxサーバ構築用にThinkCentre M75q Tiny Gen2を購入 - Magnolia Tech
                        • 『ゼルダの伝説 ティアーズ オブ ザ キングダム』にて「超火力魔物たたき棒」が発明される。物理演算とゾナウギアの“クセ”を利用したゴーレム頭突きマシン - AUTOMATON

                          『ゼルダの伝説 ティアーズ オブ ザ キングダム』にて、浮遊石とゴーレムの頭を組み合わせて魔物に大ダメージをあたえる装置が考案された。2種類のゾナウギアを組み合わせただけの簡単な装置ながら大ダメージが発生し、シュールな見た目も相まってか注目を集めている。 『ゼルダの伝説 ティアーズ オブ ザ キングダム』は、Nintendo Switch向けに発売中のアクションアドベンチャーゲームだ。『ゼルダの伝説 ブレス オブ ザ ワイルド』(以下、ブレス オブ ザ ワイルド)の続編にあたる。本作では、そんなリンクの右手に宿る「ウルトラハンド」の能力によって物体やゾナウギアを組み合わせ、さまざまなものをビルドできる。 制作物は一部ユーザー間で“ゾナウビルド”と呼ばれ、国内外問わずSNSなどで日夜共有されている。海外掲示板Redditでは、魔物討伐用から単に挙動が面白い装置などのさまざまな装置が、主に「r

                            『ゼルダの伝説 ティアーズ オブ ザ キングダム』にて「超火力魔物たたき棒」が発明される。物理演算とゾナウギアの“クセ”を利用したゴーレム頭突きマシン - AUTOMATON
                          • 古典力学 – オススメの参考書 (上級者向けを意識して) | Math Relish

                            古典力学 – オススメの参考書 (上級者向けを意識して) 物理学の入口,それは古典力学. 書店に出向けば古典力学 (以下,しばしば単に力学) のテキストが必ずあるはずだ. 何よりも一つの体系立った最も古い物理学なので,一口にテキストといっても微分積分学のテキストのように,星の数ほどある. 微分積分学 – オススメの参考書 (高校数学との接続を意識して) その中でも以下では上級者向に的を絞って紹介したい. というのも,入門者・初級者向のテキストは現代において「積極的に出版・宣伝される対象」として優遇されており,「わざわざ紹介する」というのが正に無駄骨を折る行為に等しいからである. 一方で上級者向は絶滅の危機といっても過言ではない. ここでは絶版本も惜しげなく紹介する. 図書館に行けばあるはずだ.閉架にもなかったら正に絶滅しているということだ. そういう年代に入ってきている.と思う. ただいき

                              古典力学 – オススメの参考書 (上級者向けを意識して) | Math Relish
                            • 本当のAWS基礎 昭和~平成~令和の時代の変遷システムの変化と今昔物語 - Qiita

                              内容 社内でAWS知らない人でもこれだけは覚えていてほしいという動画を作成して欲しいとリクエストあり。その内容を資料化したものです。小学生の子供に説明してみましたがになんとなくAWSが分かったと言っていたので今回は結構分かりやすくまとめられたと思います。 システムを構築する時 システムを構築する際、サーバやネットワークなどのインフラが必要になります。昭和の時代は物理サーバを買ってきてラックマウントしてネットワークに接続してと物理的な作業が多く発生していました。 その後、物理サーバの上に仮想的なサーバを作成できる仮想化技術の発展により、仮想サーバが主流となりました。最初に物理サーバを用意して、仮想化基盤を構築する必要があります。仮想化基盤構築後は、新しいシステムを作りたい場合はすぐに仮想サーバの準備を行うことができ、物理環境の時と比較すると大きな進展がありました。 仮想化基盤を自社で構築する

                                本当のAWS基礎 昭和~平成~令和の時代の変遷システムの変化と今昔物語 - Qiita
                              • チ〇ポを“全力”で立たせる | オモコロ

                                【警告】 この記事には「男性器を模した性具」の画像が含まれています。 苦手な方は、閲覧をお控えいただくようお願いいたします。 >了承して読む<

                                  チ〇ポを“全力”で立たせる | オモコロ
                                • 時間が逆転?量子コンピューターを用いた観測で、量子レベルで時間が逆方向に流れる現象を確認(米・露共同研究) : カラパイア

                                  時間の流れは過去から未来へ向かって流れるというのが常識だ。だが、逆の方向にも淀みなく流れるようだ。 今年初めに行われた実験では、少なくとも量子のスケールでは過去と未来の区別がそう確かなものではないことを告げている。 これがわかったからといって、恐竜の時代までさかのぼれるタイムマシンを作れるわけではないが、それができない理由についてはいくばくかの手がかりを与えてくれる。

                                    時間が逆転?量子コンピューターを用いた観測で、量子レベルで時間が逆方向に流れる現象を確認(米・露共同研究) : カラパイア
                                  • レーザー核融合で1京ワットのエネルギーを生み出すことに成功、核融合発電の実用化へ大きく前進

                                    アメリカにあるローレンス・リバモア国立研究所が2021年8月17日に、192本のレーザーを用いて核融合を発生させ、1京ワットを超える膨大なエネルギーを発生させることに成功したと発表しました。 National Ignition Facility experiment puts researchers at threshold of fusion ignition | Lawrence Livermore National Laboratory https://www.llnl.gov/news/national-ignition-facility-experiment-puts-researchers-threshold-fusion-ignition Lawrence Livermore Lab makes significant achievement in fusion https:

                                      レーザー核融合で1京ワットのエネルギーを生み出すことに成功、核融合発電の実用化へ大きく前進
                                    • 「創作では学会を追放された悪い科学者でてくるけど実際どんなことしたら追放されるのか」に対する学者の答えが逆に超納得

                                      武田 紘樹 @tomatoha831 妻「漫画とか映画とかで学会を追放された悪い科学者出てくるでしょ」 私「うん」 妻「実際どんな悪いことしたら学会って追放されるの」 私「年会費払い忘れ」 2021-12-05 23:41:19

                                        「創作では学会を追放された悪い科学者でてくるけど実際どんなことしたら追放されるのか」に対する学者の答えが逆に超納得
                                      • Engadget | Technology News & Reviews

                                        Ryan Gosling and Miller/Lord’s Project Hail Mary could be the sci-fi event of 2026

                                          Engadget | Technology News & Reviews
                                        • 日本に数学や物理学を学ぶ女性が少ないのはなぜ? - POLICY DOOR ~研究と政策と社会をつなぐメディア~

                                          「女性が入ると会議が長くなる」などと発言して東京オリンピック・パラリンピック組織委員会会長を辞任した森喜朗会長。この女性蔑視発言は国際的にも問題視され、日本のジェンダーギャップがいまだに大きいことが改めて白日の下にさらされた。世界経済フォーラムのジェンダーギャップ指数2020 で、日本は121位であるという事実も再認識された。こうした社会風土が、女性の理系進学に影響をしている可能性を示唆したグループがある。 横山教授が取り組んだのは、なぜ日本では数学や物理学の女子が少ないのかという問題だ。日本では理学部や工学部、中でも数学や物理学といった分野の女性比率が極めて低い。女子学生の理系進学の障害になっているものは何なのか。 ジェンダー研究をスタートさせた理由 科学技術社会論の研究者である横山教授は、学生時代はスーパーカミオカンデを使ったニュートリノ実験のメンバーだった。もともと科学ジャーナリスト

                                            日本に数学や物理学を学ぶ女性が少ないのはなぜ? - POLICY DOOR ~研究と政策と社会をつなぐメディア~
                                          • 「コーンシロップに3色の絵の具を入れて回転すると混ざる→逆回転すると元に戻った!?」魔法のような実験 : らばQ

                                            「コーンシロップに3色の絵の具を入れて回転すると混ざる→逆回転すると元に戻った!?」魔法のような実験 透明なコーンシロップの中に3色の絵具を入れてグルグルと回すと、混ざり合います。 そこまでは想像通りなのですが、逆回転をすると魔法でも使ったかのように元通りになるのだとか。 デモンストレーション映像をご覧ください。 Demonstration of Stokes' flow in a corn syrup. In this type of flow. : Reddit Laminar Flow - YouTube コーンシロップの中に、適当に注入した3色の絵の具。 グルグル回すと混じり合い、希薄になっていきます。 ところが逆向きに回していくと、なんと元の時点に戻る! 逆再生でもしたかのような不思議な現象。 海外掲示板のコメントをご紹介します。 ●つまりコーンシロップが時空トラベルの鍵だったん

                                              「コーンシロップに3色の絵の具を入れて回転すると混ざる→逆回転すると元に戻った!?」魔法のような実験 : らばQ
                                            • 途方もない重力波を検出、波長は数光年から数十光年、初の証拠

                                              2つのブラックホールがお互いの周りを回りながら近づく様子を描いた図。このときに重力波を発する。(ILLUSTRATION BY MARK GARLICK, SCIENCE PHOTO LIBRARY) 時間と空間が織りなす巨大な重力波が検出されたことを示す証拠が得られた。その波長は、なんと数光年から数十光年だという。新たに発表された研究によると、このような波長の重力波の存在を示す証拠が見つかったのは初めてで、最大で太陽の100億倍という質量をもつ超巨大ブラックホールどうしの合体によるものではないかと考えられている。今回の発見の詳細は、2023年6月29日付けで学術誌「Astrophysical Journal Letters」に掲載された一連の論文にまとめられている。 この波を観測したのは、「北米ナノヘルツ重力波観測所」(NANOGrav)の研究者グループだ。68個のパルサーと呼ばれる回転

                                                途方もない重力波を検出、波長は数光年から数十光年、初の証拠
                                              • 情報力学第2法則はこの世界がシミュレーションであることを示している - ナゾロジー

                                                情報理論は世界の秘密を暴くのでしょうか? 英国のポーツマス大学(UOP)で行われた研究によって、情報力学第2法則の存在は、私たちが存在する宇宙全体がシミュレーションであることを示すとする、興味深い結果が発表されました。 情報力学は情報は宇宙の基本的な構成要素であり、エネルギーと質量の両方を持つ物理的な存在であると定義しており、既存の情報熱力学とは厳密には異なっています。 また情報力学第2法則においては、あらゆる現象の情報内容は最小限に抑えられる傾向があるとされています。 新たな研究ではこの情報力学の第2法則による情報圧縮が、生物の遺伝情報や原子の情報量、数学的対象性、さらには宇宙全体に対して普遍的に適合できることを示しています。 また情報圧縮が起こるように世界がプログラムされているのは、この世界をシミュレートする演算機の負荷を軽減する目的があるためだと述べられています。 情報力学は、私たち

                                                  情報力学第2法則はこの世界がシミュレーションであることを示している - ナゾロジー
                                                • 反物質が重力に従い落下することが明らかになったことでワープドライブ実現の最大の希望が消滅したとの指摘

                                                  実用的な「ワープドライブ」を作るためには、反物質の存在と、反物質が反重力を持っていなければいけないという大前提が必要でした。ところが、欧州原子核研究機構(CERN)の研究チームが反物質を用いた実験を行った結果、反物質が重力に従って落下することが観測されたため、物理学者のイーサン・シーゲル氏は「ワープドライブの実現可能性は断たれてしまった」との意見を提唱しています。 Warp drive's best hope dies, as antimatter falls down - Big Think https://bigthink.com/starts-with-a-bang/warp-drives-best-hope-dies/ 19世紀頃から、空間は平坦なものではなく湾曲しているのではないかという説が数学者や物理学者により提唱されてきました。時空が湾曲し、折りたたまれることにより、物理的に

                                                    反物質が重力に従い落下することが明らかになったことでワープドライブ実現の最大の希望が消滅したとの指摘
                                                  • 東大、熱を一方向のみに伝えるナノチューブ新素材を開発

                                                    東京大学の研究者らがカーボンナノチューブを用いて、ある方向に沿っては熱を伝えるが、その垂直方向にはほとんど熱を伝えない新素材を作り出すことに成功した。コンピューターなどのデバイスの冷却システムを設計・構築する方法に影響を与えそうだ。 by Emerging Technology from the arXiv2020.01.23 614 168 141 8 電気技術者にとって熱は厄介な存在だ。電子デバイスの信頼性を下げ、完全な誤作動を引き起こすことさえある。だからこそ、コンピューターの部品には放熱グリスが塗りたくられ、放熱管、ファン、さらには水冷システムまでが取り付けられているのだ。 目標は、繊細な部品から熱を集め、環境中に逃がせるようにすることだ。だが、デバイスが小さくなるほどこの課題を解決するのは難しくなる。たとえば、最新のトランジスターはナノメートル単位の大きさしかない。 コストパフォ

                                                      東大、熱を一方向のみに伝えるナノチューブ新素材を開発
                                                    • 素粒子Wボソンの質量 予測より大きく「標準理論」修正迫るか | NHK

                                                      物質を構成する基本的な粒子である素粒子の1つについて、実験から解析された質量が予測より大きいという結果が得られたことを筑波大学などの国際的な研究グループが発表し、素粒子物理学の柱となっている「標準理論」の修正を迫る可能性があるとしてさらなる検証が必要だとしています。 「標準理論」は現在の素粒子物理学の柱となっている理論で、素粒子の種類や質量などの特性を説明できるとされています。 筑波大学の受川史彦教授などの国際的な研究グループは、力を伝えるWボソンと呼ばれる素粒子についてアメリカの研究機関で行った実験データを解析したところ、質量が標準理論の予測より0.09%ほど大きいという結果が得られたということです。 誤差は0.01%とこれまでで最も高い精度で解析しているため、「標準理論」の修正を迫る可能性があり、さらなる検証が必要だとしています。 今回の結果について、一部の研究者から新たな素粒子が存在

                                                        素粒子Wボソンの質量 予測より大きく「標準理論」修正迫るか | NHK
                                                      • “未知の天体 天の川銀河に” 東京大学など国際研究グループ | NHKニュース

                                                        宇宙から来る観測史上最も高いエネルギーのガンマ線を捉えたと東京大学などが参加する国際研究グループが発表し、高エネルギーの元となる未知の天体が天の川銀河の中にある証拠だとしています。 宇宙空間では、原子核を構成する粒子である陽子が飛び交っていて、その中に超高エネルギーの陽子があることが観測されていましたが、どのようにエネルギーを得ているのか分かっておらず、元となる未知の天体を「ペバトロン」と名付けて60年来の謎とされています。 東京大学と中国の大学などの国際研究グループは中国の高原地帯に観測装置を設置して、超高エネルギーの陽子が物質に衝突したときに放出されるガンマ線の観測を行いました。 その結果、2017年までの2年間に光の1000兆倍に相当する観測史上最も高いエネルギーのガンマ線などを23回観測し、その発生源は天の川銀河に沿って広く分布していることが分かったということです。 研究グループは

                                                          “未知の天体 天の川銀河に” 東京大学など国際研究グループ | NHKニュース
                                                        • 底なしの謎の天体「ブラックホール」に天文学者興奮の新展開。専門家が語る研究の最前線

                                                          ブラックホールと降着円盤、ジェットの想像図 Sophia Dagnello, NRAO/AUI/NSF 強力な重力によって、周囲にあるものを吸い込んでしまう「ブラックホール」。2023年4月、英科学誌「nature」で最新の観測結果が発表され、天文学者が沸いています。 「新しいことが分かっても、また分からないことが出てくる。底なしの謎の天体の研究から、脱出できない状態です」 国内外から100人を超える天文学者が参加した国際共同研究を率いた国立天文台水沢VLBI観測所の秦和弘助教は、このように興奮気味に話します。 国立天文台の記者会見から、何が彼らをそこまで興奮させるのか、研究の最前線を探っていきましょう。 2019年に公開された、地球から5500万光年先にあるM87銀河のブラックホールシャドウの画像。この画像は、史上始めてブラックホールの存在を直接的に捉えたものとして、当時世界中で話題とな

                                                            底なしの謎の天体「ブラックホール」に天文学者興奮の新展開。専門家が語る研究の最前線
                                                          • 高速回転する磁石を別の磁石に近づけると磁石が回転・浮上するという不思議な現象の秘密が解明される

                                                            2つの磁石を同じ極同士で向かい合わせで並べると、磁石は互いに反発し合い、うまく一方の磁石をもう一方の磁石の下に配置すると、片方の磁石を浮かび上がらせることも可能です。しかし、ただ磁石を並べるだけではバランスが不安定で、浮上した磁石を維持することは困難です。そのため、磁石の浮上を安定させる手段として超伝導やサーボ機構、電磁誘導などの効果が存在しますが、2021年に発見された「高速回転するローターに磁石を取り付けて別の磁石に近づけると回転しながら浮上する」という反応は、これまでの磁気浮上では発見されていない仕組みでした。 Symmetry | Free Full-Text | Polarity Free Magnetic Repulsion and Magnetic Bound State https://www.mdpi.com/2073-8994/13/3/442 Physics - Ho

                                                              高速回転する磁石を別の磁石に近づけると磁石が回転・浮上するという不思議な現象の秘密が解明される
                                                            • 【Python】プログラムでフーリエ変換を理解しよう!【FFT, 標本化定理, ナイキスト周波数】 | Raccoon Tech Blog [株式会社ラクーンホールディングス 技術戦略部ブログ]

                                                              こんにちは。早く業務に慣れたい開発チーム入社1年目の髙垣です。 急ですが皆さん。ふと、音をフーリエ変換したい時ってありませんか? ありますよね。 でも、「フーリエ変換って学校で計算式で習ったけど、結局は何をしているんだ?」となることありませんか? そこで今回は計算式なんてほっといて、Pythonを使ってフーリエ変換が何をやっているのか体験してみましょう! 環境構築 下記リポジトリをクローンしてください https://github.com/takaT6/fft-tutorial クローンができたら下記のライブラリをインストールしてください↓ pip install numpy matplotlib japanize_matplotlib japanize_matplotlib はmatplotlibに日本語を書き込めるようにするライブラリです。 日本語化をするにはフォントを入れたり、設定フ

                                                                【Python】プログラムでフーリエ変換を理解しよう!【FFT, 標本化定理, ナイキスト周波数】 | Raccoon Tech Blog [株式会社ラクーンホールディングス 技術戦略部ブログ]
                                                              • 2枚のコンピューターチップ間で初の量子テレポーテーションに成功。情報を瞬間転送(英・デンマーク共同研究) : カラパイア

                                                                英ブリストル大学とデンマーク工科大学の研究グループから、ふたつのコンピューターチップ間で量子テレポーテーションすることに史上初めて成功したと報告があった。 それによると、物理的にも電気的にも接続されていないというのに、チップからもう一方のチップへと瞬時に情報を転送することができたそうだ。 量子コンピューターや量子インターネットの可能性の扉を開くブレイクスルー(飛躍的な進歩)だという。

                                                                  2枚のコンピューターチップ間で初の量子テレポーテーションに成功。情報を瞬間転送(英・デンマーク共同研究) : カラパイア
                                                                • 「かつて見たこともないような」天体、天の川銀河内で発見

                                                                  地球から見た天の川銀河と、一定間隔の電波エネルギーの放出が確認された位置(星形アイコン)を示した画像。豪国際電波天文学研究センター(ICRAR)の天体物理学者ナターシャ・ハーレーウォーカー氏が提供(撮影日不明、2022年1月26日提供)。(c)AFP PHOTO / ICRAR / Curtin / Natasha Hurley-Walker 【1月28日 AFP】オーストラリアの研究者らがこのほど、回転する奇妙な天体を天の川銀河(銀河系、Milky Way)内で発見した。天文学者が今まで見たこともないような天体だという。 この天体は、卒業論文作成中の男子大学生が、豪ウエスタンオーストラリア(Western Australia)州で稼働している低周波電波望遠鏡マーチソン・ワイドフィールド・アレイ(MWA)を使って発見した。約1時間に3回、電波エネルギーを爆発的に放出する。 電波エネルギーは

                                                                    「かつて見たこともないような」天体、天の川銀河内で発見
                                                                  • 村田次郎 / Jiro Murata on Twitter: "大盛り上がりのカーリング。石の曲がり方を見て、あれ?と思いませんか?野球の変化球と同じで、上から見て時計回り回転で、右へ曲がります。前面の摩擦をイメージするのと、逆向きなんです。実は今も未解決の、100年近くも論争が続いている「世紀の謎」なのです。"

                                                                    大盛り上がりのカーリング。石の曲がり方を見て、あれ?と思いませんか?野球の変化球と同じで、上から見て時計回り回転で、右へ曲がります。前面の摩擦をイメージするのと、逆向きなんです。実は今も未解決の、100年近くも論争が続いている「世紀の謎」なのです。

                                                                      村田次郎 / Jiro Murata on Twitter: "大盛り上がりのカーリング。石の曲がり方を見て、あれ?と思いませんか?野球の変化球と同じで、上から見て時計回り回転で、右へ曲がります。前面の摩擦をイメージするのと、逆向きなんです。実は今も未解決の、100年近くも論争が続いている「世紀の謎」なのです。"
                                                                    • 重い人ほどローラー式滑り台を速く滑ると判明!物理学の常識を修正か? - ナゾロジー

                                                                      滑り台で重い物体の方が速く滑る!?ローラー滑り台は子供の頃より大人になってから滑る方が速度が出て怖い? / Credit:藤尾山公園ローラー滑り台 HD(You Tube)山の行楽地に出掛けるとよく見かけるローラー形式の滑り台。 この遊具を大人になってから滑ったとき、子供の頃より速度が出て怖いと感じたことは無いでしょうか? もしくは子供を先に滑らせて、後から自分が滑ったとき、子供に追いついてぶつかってしまったという経験を持つ人もいるかもしれません。 実際、今回の研究者である村田教授がそうした経験をしたといいます。 確かに筆者も甥と滑り台で遊んでいて、同じ経験をしました。 こうした現象についてほとんどの人は、体重が重くなれば速く滑るのは直感的になにも不思議なことではないと思うかもしれません。 しかし、先にも述べた通り、実際には丸めたティッシュとスマホをベッドに落とせば同時に布団に着地します。

                                                                        重い人ほどローラー式滑り台を速く滑ると判明!物理学の常識を修正か? - ナゾロジー
                                                                      • レオナルド・ダ・ヴィンチはニュートンの100年前に重力を理解していたことがスケッチから判明 : カラパイア

                                                                        あらゆる分野に精通し、比類なき万能の天才として知られている「レオナルド・ダ・ヴィンチ」が没して5世紀が過ぎたが、いまだ彼の残した偉業は完全には解明されていない。 新たな研究で、ダ・ヴィンチは、ニュートンよりも100年以上前に、重力の存在に気が付いていたことが、彼の残したスケッチから明らかになったという。

                                                                          レオナルド・ダ・ヴィンチはニュートンの100年前に重力を理解していたことがスケッチから判明 : カラパイア
                                                                        • 書評 「「ネコひねり問題」を超一流の科学者たちが全力で考えてみた」 - shorebird 進化心理学中心の書評など

                                                                          「ネコひねり問題」を超一流の科学者たちが全力で考えてみた 「ネコの空中立ち直り反射」という驚くべき謎に迫る 作者:グレゴリー・J・グバーダイヤモンド社Amazon 本書は物理学者であるグレゴリー・グバーが「ネコひねり問題」について語った本になる.「ネコひねり問題」というのは,「ネコは逆さ向けにして落とされても空中でうまく身体をひねって脚から着地するが,物理学的に考えてみて,なぜ,どのようにしてそのようなことができるのか」という問題だ.書店でこの本を見かけて最初に感じたのは,ネコは頭からひねってその後身体全体の向きを変えることができるが,それだけの問題をどうやったら一冊の本にまで膨らませることができるのだろうかということだ.そしてそれに興味を引かれて購入して読んでみたものだが,この「ネコひねり問題」には何重にも絡まる謎があって,どうしてなかなか奥深く面白い.原題は「Falling Felin

                                                                            書評 「「ネコひねり問題」を超一流の科学者たちが全力で考えてみた」 - shorebird 進化心理学中心の書評など
                                                                          • 「重水」の氷を普通の水に入れるとどうなる? 明大教授の実験が「まさに“重水”」と話題

                                                                            比重の大きい「重水」を凍らせて、通常の水に入れたらどうなるのか? 明治大学の宮下芳明教授(@HomeiMiyashita)が、X(Twitter)で公開した実験の様子が不思議です。 通常の水よりも密度の高い、重水で作った氷 水に入れると……? 重水とは、文字通り「通常の水よりも比重が大きい水」のこと。水素と酸素からなる通常の水分子とは異なり、水素の同位体である重水素(デューテリウム)などが含まれます。 宮下さんは重水から氷を作り、通常の水で満たしたメスシリンダーへ投入。通常の氷ならば水面に浮かぶところが、重水の氷はゆっくりと底まで沈んでいきました。 「通常よりも重い水」でできている以上、当たり前でではあるのだけれど、「氷が沈む」って不思議 理屈で言えば当然のことながら、氷が沈む様子はとても不思議で、「興味深い」「まさに重い水」と注目を集めることに。「貴重な映像」「重水素の中性子が水素より1

                                                                              「重水」の氷を普通の水に入れるとどうなる? 明大教授の実験が「まさに“重水”」と話題
                                                                            • 米国立研究所、「核融合点火」に成功したと発表 使ったエネルギーを上回るエネルギー生産

                                                                              米ローレンス・リバモア国立研究所は12月13日(現地時間)、5日に行った制御核融合実験で、核融合を起こすために使うレーザーエネルギーよりも多いエネルギーの生成(核融合点火)に初めて成功したと発表した。「クリーンな核融合エネルギーの見通しに関する非常に貴重な洞察を提供する」としている。 核融合でエネルギーを生成できれば、化石燃料の燃焼による温室効果ガスや原発の危険性から解放される可能性がある。 この実験では、研究所に設置された施設の192個の巨大なレーザーでダイヤモンドで包んだ凍結水素を含む小さなシリンダーを爆破した。

                                                                                米国立研究所、「核融合点火」に成功したと発表 使ったエネルギーを上回るエネルギー生産
                                                                              • 6次元の揺らぎがもたらす準結晶の奇妙な物性 | 東京大学

                                                                                東京大学 日本原子力研究開発機構 発表のポイント 6次元結晶の3次元空間の断面とみなせる「準結晶」の比熱が異常に大きくなる現象を、実験と機械学習シミュレーションで追求し、高次元での原子のゆらぎが原因であると突き止めた。 準結晶のシミュレーションには膨大な計算が必要で、これまでは簡単なモデルでしか行われてこなかったが、今回、高精度かつ長時間の機械学習シミュレーションを行い、実験と比較することが可能になった。 この結果は、複雑な物質において実験と比較可能な機械学習シミュレーション手法を確立できた事を意味しており、準結晶を用いた新たな熱電材料など様々な材料にこの手法を適用することで、材料開発が加速すると期待される。 高次元の揺らぎが3次元空間に影響を与える様子の概念図 Credit: UTokyo ITC/Shinichiro Kinoshita 概要 東京大学情報基盤センターの永井佑紀准教授、

                                                                                  6次元の揺らぎがもたらす準結晶の奇妙な物性 | 東京大学
                                                                                • LaTeX で物理学徒が最低限知っておくべきこと・私が気を付けていること - Qiita

                                                                                  はじめに ごきげんよう.いぇとです. この記事は東京大学理学部物理学科 B3 有志による Physics Lab. 2022 Advent Calendar 2021 19日目の記事です. Physics Lab. とは物理学科有志による五月祭企画です.私は生物物理班に所属しています.生物物理班については,たがやし班長が書いてくれた記事『生物物理班だよ』を見てください.絶対. 当初の予定では,19日目は統計力学のくりこみ群の話を書こうと思っていたのですが,多忙につき色々と試行錯誤をする暇がなく辞めることにしました.書いてもいいんですけどね. 代わりに LaTeX のお役立ち(?)情報を書こうと思います.この記事では LaTeX の基本事項を前提とします.今回は私が普段使っているパッケージの紹介や気をつけていることなどについてまとめます.(「普段気を付けていること」とかいうの,普段気を付けて

                                                                                    LaTeX で物理学徒が最低限知っておくべきこと・私が気を付けていること - Qiita