並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 115件

新着順 人気順

Quantumの検索結果1 - 40 件 / 115件

Quantumに関するエントリは115件あります。 量子コンピュータ科学science などが関連タグです。 人気エントリには 『【ネタバレあり】量子物理学者に「映画『TENET テネット』がどうすさまじいのか」を教えてもらった』などがあります。
  • 【ネタバレあり】量子物理学者に「映画『TENET テネット』がどうすさまじいのか」を教えてもらった

    【ネタバレあり】量子物理学者に「映画『TENET テネット』がどうすさまじいのか」を教えてもらった2020.09.29 20:0073,218 山田ちとら クリストファー・ノーラン監督の最新作『TENET テネット』、もう観ました? 観たけど複雑すぎてよくわからなかったのは筆者だけではなかったはず。 そこで、作中に何度も登場した「エントロピー」という言葉について調べてから再度観に行ったんですが、それでもまだまだわからなかったよ…!! ならばプロに解説していただくしか理解への道は拓けない。というわけで、『TENET テネット』の科学監修を担当された東京工業大学理学院物理学系助教の山崎詩郎先生にお話を伺ってきました。 山崎詩郎(やまざき・しろう) Photo: かみやまたくみ東京大学大学院理学系研究科物理学専攻博士課程修了。博士(理学)。量子物性の研究で日本物理学会第10回若手奨励賞を受賞。『

      【ネタバレあり】量子物理学者に「映画『TENET テネット』がどうすさまじいのか」を教えてもらった
    • https://utokyo-icepp.github.io/qc-workbook/welcome.html

      • Googleが量子超越を達成 -新たな時代の幕開けへ(前編)

        2019年10月23日、Googleが量子超越を実現したという論文を公開し、量子コンピュータの歴史に新たな1ページが刻まれた。 「量子超越」は、量子コンピュータの歴史における大きな一歩である。Googleの研究チームは、最速のスーパーコンピュータを使っても1万年かかる問題を、Googleの53量子ビット(qubit)の量子コンピュータは10億倍速い、200秒で解けることを示したという。 今後、Googleが示した量子超越性に対して様々な角度から検証がなされていくだろう。量子超越性は、物理学及び計算科学の歴史の1ページに刻まれるべきマイルストーンである一方、量子超越性や量子コンピュータの実用化についても、様々な憶測や誤解が広まっている。 この記事では、Googleが示した量子超越性について前編と後編の2つのパートに分けて解説していく。 前編では、量子超越性を実証するための基本的な考え方、量子

          Googleが量子超越を達成 -新たな時代の幕開けへ(前編)
        • 24年4月の量子コンピュータ業界の動向がよくわからんというので書いてみました。 by Yuichiro Minato | blueqat

          昨年から量子コンピュータ業界は大きな転換期に入りました。これまで人類には難しすぎるという量子コンピュータはみんなで四苦八苦しながら開発をしてきたと思います。具体的な沿革としては、 1、2012年に簡易型量子コンピュータみたいな量子アニーリングマシンが出る。 2、量子アニーリングマシンは2016年をピークに2018年ごろに廃れる。(デスクトップパソコンと大差ないことがわかる) 3...

            24年4月の量子コンピュータ業界の動向がよくわからんというので書いてみました。 by Yuichiro Minato | blueqat
          • 蒸発するブラックホールの内部を理論的に記述

            理化学研究所(理研)数理創造プログラムの横倉祐貴上級研究員らの共同研究チームは、量子力学[1]と一般相対性理論[2]を用いて、蒸発するブラックホールの内部を理論的に記述しました。 本研究成果は、ブラックホールの正体に迫るものであり、遠い未来、情報[1]を蓄えるデバイスとしてブラックホールを活用する「ブラックホール工学」の基礎理論になると期待できます。 近年の観測により、ブラックホールの周辺のことについては徐々に分かってきましたが、その内部については、極めて強い重力によって信号が外にほとんど出てこられないため、何も分かっていません。また、ブラックホールは「ホーキング輻射[3]」によって蒸発することが理論的に示されており、内部にあった物質の持つ情報が蒸発後にどうなってしまうのかは、現代物理学における大きな未解決問題の一つです。 今回、共同研究チームは、ブラックホールの形成段階から蒸発の効果を直

              蒸発するブラックホールの内部を理論的に記述
            • 古典プログラマ向け量子プログラミング入門 [フル版]

              3. 3 Part 0:イントロダクション(プロローグ) Part 1: 関連数学と1量子ビット操作 1-1: 線形代数学の基本知識 1-2: ブラケット記法と量子計算 1-3: ブロッホ球と1量子ビット操作 1-4: IBM Q Part 2: 量子ゲート型のプログラミング 2-1: 複数量子ビット操作 2-2: 量子アルゴリズムの基本 2-3: ドイチェ アルゴリズム 2-4: グローバー検索(量子検索) 2-5: 量子フーリエ変換 2-6: ショアのアルゴリズム 2-7: エラー訂正問題 2-8: Cirq(Google)・Blueqat(MDR) 2-9: 量子ゲート編 付録 Part 3: 量子アニーリング型のプログラミング 3-1: ハミルトニアンとQUBO 3-2: イジングモデル 3-3: グラフ理論 3-4: 巡回セールスマン問題 3-5: 多体相互作用 3-6: アニー

                古典プログラマ向け量子プログラミング入門 [フル版]
              • 量子力学に「観測問題」は存在しない|Masahiro Hotta

                前世紀には観測問題を論じる人が多かったのですが、標準的な量子力学にはそのような観測問題はなかったことが現在では分かっております。例えば以下のように理解されています。 (1)波動関数の収縮について: 量子力学は情報理論の一種であり、波動関数は古典力学の粒子のような実在ではなく、情報の集まりに過ぎません。測定によって対象系の知識が増えることで、対象系の物理量の確率分布の集まりである波動関数も更新されるのが波動関数の収縮です。 「系を観測をすると、その波動関数(または状態ベクトル)は収縮し、その変化はシュレディンガー方程式に従わない」と聞いて、前世紀の「観測問題」に目覚めてしまって、「波動関数とは?収縮とは?」と懊悩してしまっている物理学徒は、まず箱の中の古典的なサイコロの目の確率を考察してみて下さい。 この場合は古典的な確率で、実際には箱の中のサイコロの目は決まっていますが、ここで問題とすべき

                  量子力学に「観測問題」は存在しない|Masahiro Hotta
                • 世界初「ポータブル量子コンピュータ」が発売。2量子ビットで118万8,000円より

                    世界初「ポータブル量子コンピュータ」が発売。2量子ビットで118万8,000円より
                  • 東京大学が「因果を打ち破って充電」する量子電池を発表 - ナゾロジー

                    因果を破って充電します。 東京大学で行われた研究により、因果律の壁を打ち破る新たな手法によって、従来の量子電池の性能限界を超えることに成功しました。 これまで私たちは古典的な物理学も量子力学でも「AがBを起こす」と「BがAを起こす」いう因果律が存在する場合、一度に実行できるのは片方だけであると考えていました。 しかし新たな充電法では、2つの因果関係を量子的に重ね合わせる方法が用いられており、「AがBを起こす」と「BがAを起こす」という2つの因果の経路から同時に充電することに成功しました。 研究者たちはこの方法を使えば、既存の量子電池の充電能力を高めることができると述べています。 しかし因果律を破るとは、具体的にどんな方法なのでしょうか? 今回はまず因果律を打ち破る不確定因果順序(ICO)と量子電池の基本的な仕組みを解説し、その後、2つの量子世界の現象を組み合わせた今回の研究結果について紹介

                      東京大学が「因果を打ち破って充電」する量子電池を発表 - ナゾロジー
                    • 千葉の高専生、ハッカソンで最優秀賞 「量子コンピューターでお手軽機械学習」とは:朝日新聞GLOBE+

                      越智優真さん。最近ギターを始め、軽音楽部にも入った。機械学習の勉強は「一日2時間ぐらい」という=木更津高専で、藤田明人撮影 木更津工業高等専門学校(千葉県木更津市)情報工学科に今春入学した越智優真さんは、4月、「Fixstars Amplifyハッカソン」(株式会社フィックスターズ主催)で、応募71作品の中で最優秀賞に輝いた。応募したのは中学3年のとき。他の応募者は、東大、東工大、早稲田大、慶応大、東北大などで専門領域を学ぶ大学生や大学院生が多く、越智さんの活躍は注目を集めた。 越智さんが応募したプログラムとアイデアの題名は、「浅(くて広い)層学習 少データでお手軽機械学習」だ。 機械学習は、人工知能(AI)が自分で物事を学ぶための技術だ。その一つとして「深層学習(ディープラーニング)」があり、画像認識、音声認識、文章の要約、翻訳など幅広い分野への応用が期待されている。 深層学習は一般に、

                        千葉の高専生、ハッカソンで最優秀賞 「量子コンピューターでお手軽機械学習」とは:朝日新聞GLOBE+
                      • 「量子」と組合せ最適化に関する怪しい言説 ―とある研究者の小言― - むしゃくしゃしてやった,今は反省している日記

                        最近,量子コンピュータの話題をニュースや新聞で見かけることが増えてきました. その中で気になってきたのが,組合せ最適化と量子コンピュータ(特に量子アニーリング)に関する怪しい言説.私自身は(古典コンピュータでの)組合せ最適化の研究をやってきて,量子コンピュータを研究しているわけではないのですが,さすがにこれはちょっと・・・と思う言説を何回か見かけてきました. 最近の「量子」に対する過熱ぶりは凄まじいので,こういう怪しい言説が広まるのは困りものです.すでにTwitter上には,“組合せ最適化は今のコンピュータでは解けない”とか“でも量子なら一瞬で解ける”という勘違いをしてしまっている人が多数見られます*1. さすがに危機感を覚えてきたので,この場できちんと指摘しておくことにしました. 今北産業(TL;DR) “古典コンピュータは組合せ最適化を解けない” → 古典コンピュータで組合せ最適化を解

                          「量子」と組合せ最適化に関する怪しい言説 ―とある研究者の小言― - むしゃくしゃしてやった,今は反省している日記
                        • Microsoftがバッテリー内のリチウムの約70%を置き換えられる材料をわずか数日で発見、Azure Quantum Elementsを使ったシミュレーションとAIモデルで実行

                          リチウムイオン電池は、現代社会でスマートフォンや電気自動車などに広く使用される一方で、破裂や火災につながる危険性が指摘されています。2024年1月9日にMicrosoftとパシフィック・ノースウエスト国立研究所(PNNL)は共同で、既存のリチウムイオン電池よりも破裂しにくい可能性のある新たな固体電解質を用いたバッテリー材料を発見したことを発表しました。今回の発見には、Microsoftの量子コンピューティングサービス「Azure Quantum Elements」が用いられました。 Discoveries in weeks, not years: How AI and high-performance computing are speeding up scientific discovery - Source https://news.microsoft.com/source/featu

                            Microsoftがバッテリー内のリチウムの約70%を置き換えられる材料をわずか数日で発見、Azure Quantum Elementsを使ったシミュレーションとAIモデルで実行
                          • 新卒退職した話 - stantonharukaの日記

                            私は新卒で入社した会社に、 2日目で見切りをつけ、 5日目に最後の出社をし、 15日目で書類上の退職を完了しました。 退職ネタはよくツイッターで書いているのですが、昨年参加させていただいた「新卒退職本5」へ寄稿した文章を元に、ブログ用の記事にいたしました。 これから会社員になる予定の方や、退職するかどうか迷っている方のご参考になれば幸いです。 ーー 留年、そして就職活動のプロに みなさんは「禁煙のプロ」というジョークを聞いたことがあるでしょうか。 俺は禁煙のプロだ。なぜなら何度も禁煙しているからだ というような話でして、類似するものに「結婚」や「ダイエット」等があります。 このジョークになぞらえて言うと、私は「就職活動のプロ」と称してもよい人間です。 プロにならざるを得なかった経緯を告白します。 本来私は2018年の3月に大学を卒業し、内定を いただいていたメーカーへ就職するはずでした。

                              新卒退職した話 - stantonharukaの日記
                            • 2億資金調達してから二年、結構量子コンピュータ頑張った結果 - Qiita

                              はじめに 2008年に起業してからコツコツやっていましたが、2014年くらいから量子コンピュータの研究開発をがんばりました。資金調達もしてある程度技術に目処がついたのと、若者から起業したいという相談をよくもらうので、まとめておきます。 経営は大事 簡単にいうとベンチャーをやろうとしたら技術よりもキャッシュが大事です。なので、財務や経営感覚がついてから技術をつけないと結構大変と思います。特に1年目は慣れない事務に忙殺されますし、二年目以降はキャッシュが厳しくなります。 あとは、最初は経営に夢見て舞い上がりがちなので、その気持ちがおさまって厳しさが一通り身についたところからが本番です。 調達の前に譲渡 2008年から10年くらいはコツコツ会社をやっていた上、そんなに頑張るタイプでもなかったのですが、たまたま2014年からやっていた量子コンピュータのニュースが巷で新聞に載るようになってから、周辺

                                2億資金調達してから二年、結構量子コンピュータ頑張った結果 - Qiita
                              • 量子コンピューターをおうちで自作しよう! ハッカーの楽しい挑戦 (1/2)

                                量子コンピューターをおうちで自作したい。足りない部品は3Dプリンターで作って、作れないものはeBayやAmazonで調達。設計はOSS(オープンソースソフトウェア)を活用すれば問題ない。助手にはときどき手伝ってくれる10歳の娘がいる。これはいけそうだ――。 「その気になれば、量子コンピューターだって自宅のガレージで作れる!」。2019年12月、ドイツ・ライプチヒで開催された「36th Chaos Communication Congress(36C3)」の講演においてヤン・アラン氏はこう断言し、自宅で現在進行中の“量子コンピューターづくり”を楽しく紹介していった。 量子コンピューター自作、まずはイオントラップ装置の研究から 量子コンピューターを設計するにあたり、アラン氏がまず検討したのは「量子ビット」をどのようにして作るかだった。量子ビット(qubit:キュービット)は量子情報の最小単位で

                                  量子コンピューターをおうちで自作しよう! ハッカーの楽しい挑戦 (1/2)
                                • 「超計算」人類の手中に グーグル実証か 【イブニングスクープ】 - 日本経済新聞

                                  人工知能(AI)などに続く革新的技術として期待される量子コンピューターが「スーパーコンピューターを超える日」が近づいてきた。米グーグルは、理論上の概念だった性能を実証し、最先端のスパコンで1万年かかる問題を瞬時に解く実験に成功したもようだ。米IBMなども研究に力を入れる。急速な進歩はいずれ人類にこれまでにない計算パワーをもたらす。AIの活用や金融市場のリスク予測などを通じ、社会にディスラプション(創造的破壊)を起こす可能性を秘める。【関連記事】スパコンで1万年分の計算、3分で Google「量子超越」発表グーグルが「量子超越」を達成したもようだ――。英フィナンシャル・タイムズは9月、こう報じた。日本経済新聞が入手した資料によると、

                                    「超計算」人類の手中に グーグル実証か 【イブニングスクープ】 - 日本経済新聞
                                  • 日本初のIBM製「ゲート型商用量子コンピュータ」が新川崎で稼働。アメリカ、ドイツに次いで世界で3番目

                                      日本初のIBM製「ゲート型商用量子コンピュータ」が新川崎で稼働。アメリカ、ドイツに次いで世界で3番目
                                    • 素粒子物理学の根幹崩れた? 磁気の測定値に未知のずれ:朝日新聞デジタル

                                      ","naka5":"<!-- BFF501 PC記事下(中⑤企画)パーツ=1541 -->","naka6":"<!-- BFF486 PC記事下(中⑥デジ編)パーツ=8826 --><!-- /news/esi/ichikiji/c6/default.htm -->","naka6Sp":"<!-- BFF3053 SP記事下(中⑥デジ編)パーツ=8826 -->","adcreative72":"<!-- BFF920 広告枠)ADCREATIVE-72 こんな特集も -->\n<!-- Ad BGN -->\n<!-- dfptag PC誘導枠5行 ★ここから -->\n<div class=\"p_infeed_list_wrapper\" id=\"p_infeed_list1\">\n <div class=\"p_infeed_list\">\n <div class=\"

                                        素粒子物理学の根幹崩れた? 磁気の測定値に未知のずれ:朝日新聞デジタル
                                      • あなたの「公開鍵暗号」はPKE? それともPKC? - Cybozu Inside Out | サイボウズエンジニアのブログ

                                        初めに サイボウズ・ラボの光成です。 いきなりですがクイズです。次のうち正しい説明はどれでしょう。 SSHやFIDO2などの公開鍵認証はチャレンジを秘密鍵で暗号化し、公開鍵で復号して認証する。 ビットコインでは相手の公開鍵を用いてハッシュ値を暗号化して相手に送る。 TLS1.3ではサーバ公開鍵を用いてAESの秘密鍵を暗号化する。 答えはどれも間違いです。 公開鍵認証は、(デジタル)署名を使って相手先の正しさを検証するものであり、暗号化は行われません。 同様にビットコインもデータや相手の正当性を確認するために署名が用いられ、暗号化は行われません。 TLS 1.3ではRSA暗号の公開鍵を用いて暗号化する方式(static RSA)は廃止され、ECDH鍵共有された値を元に秘密鍵を生成し、AES-GCMなどの認証つき暗号で暗号化します。 公開鍵暗号とは いわゆる公開鍵暗号には大きく2種類の意味があ

                                          あなたの「公開鍵暗号」はPKE? それともPKC? - Cybozu Inside Out | サイボウズエンジニアのブログ
                                        • 未知の素粒子観測か 欧米チーム、想定外の事象 - 日本経済新聞

                                          未発見の謎の物質「暗黒物質」を探索している東京大や名古屋大、神戸大が参加する国際実験チーム「ゼノン」は17日、イタリアのグランサッソ国立研究所の地下にある施設で実施した実験で、想定外の事象を観測したと発表した。未知の素粒子を捉えた可能性があるという。暗黒物質である可能性は低いが、信号の特徴から素粒子物理学で存在が予想される粒子「アクシオン」かもしれず、東大などはさらに詳しく調べる。アクシオンも

                                            未知の素粒子観測か 欧米チーム、想定外の事象 - 日本経済新聞
                                          • 「量子超越性」を持つ光量子コンピュータ、AWSで利用可能に スパコン富岳で9000年かかる計算を36マイクロ秒で

                                            カナダの量子ベンチャーXanadu(ザナドゥ)は6月1日(現地時間)、特定のタスクで世界最高性能のスーパーコンピュータの計算速度を上回るとする光量子コンピュータ「Borealis」をAmazon Web Services(AWS)上で提供すると発表した。 XanaduはBorealisを使って、量子コンピュータの計算能力が従来のスーパーコンピュータを上回ることを示す「量子超越性」を持つことを実証。「初めての完全にプログラマブルな光量子コンピュータであり、量子超越性を持つマシンがクラウドで一般に公開されたのも初めてだ」と同社は説明している。この成果は、英科学雑誌「Nature」に6月1日付で掲載された。 Borealisは、ユーザーが指定したプログラムに従い、3次元的に絡み合った216個のスクイズド状態(量子ゆらぎを抑えた状態)の光量子ビットを合成し、計算を行う。スーパーコンピュータ「富岳」

                                              「量子超越性」を持つ光量子コンピュータ、AWSで利用可能に スパコン富岳で9000年かかる計算を36マイクロ秒で
                                            • 量子コンピュータでも解読できない暗号技術、東大らが開発

                                              東京大学と九州大学マス・フォア・インダストリ研究所、日本電信電話(NTT)の研究チームは11月24日、量子コンピュータでも解読できない新たなデジタル署名「QR-UOV署名」を開発したと発表した。 この署名は、既存の技術よりも署名と公開鍵のデータサイズが小さいのが特徴。多項式の割り算の余りを使って新しい足し算や掛け算ができる代数系「剰余環」を公開鍵に使うことで、安全性とデータの軽減を両立しているという。 現在普及している暗号技術には、 Webブラウザに使われる「RSA暗号」や、画像の著作権保護や暗号資産に使われる「楕円曲線暗号」がある。これらは、大規模な量子コンピュータが実現した場合、解読されるリスクがあるという。そのため、量子コンピュータが大規模化した時代でも安全に利用できる技術の開発が進んでいた。 中でも、1999年に提案され、20年以上にわたり本質的な解読法が報告されていない「UOV署

                                                量子コンピュータでも解読できない暗号技術、東大らが開発
                                              • 光の運動量を0にすると二重スリット実験で「しま模様」が消えると判明 - ナゾロジー

                                                地球に住む私たちは、太陽が発する光エネルギーの恩恵を受けています。 植物が光合成をしたり太陽光パネルで発電できるのは、光エネルギーを利用しているからです。 そして光のエネルギーが消費されれば、光は消えてしまいます。 一方、光はエネルギーだけでなく運動量も持っていることが知られています。 そのためソーラーセイルのような光から運動量を受け取って徐々に加速していくシステムも考案されています。 ではこの光の運動量を0にしたら何が起こるのでしょうか? 米国ハーバード大学(Harvard University)で行われた研究によれば、光を全く屈折しない材料に入れると、運動量が0になり、存在確率が材料内部全体に拡散して、どこにあるか全く不明になる、とのこと。 また運動量が0になった光を二重スリット実験に使用すると、理論上、光の波長が無限になって「しま模様」がなくなってしまうことが示されました。 運動量が

                                                  光の運動量を0にすると二重スリット実験で「しま模様」が消えると判明 - ナゾロジー
                                                • ビットコイン、7500ドル割れ 量子コンピューター警戒(写真=ロイター)

                                                  日経の記事利用サービスについて 企業での記事共有や会議資料への転載・複製、注文印刷などをご希望の方は、リンク先をご覧ください。 詳しくはこちら 代表的な暗号資産(仮想通貨)ビットコインの価格が急落している。情報サイトのコインデスクによると、日本時間23日夜に一時1ビットコイン=7500ドルを下回り、約5カ月半ぶりの低水準をつけた。米グーグルが同日、量子コンピューターを使って複雑な計算問題を極めて短時間で解いたと発表し、ビットコインのセキュリティが機能しなくなるとの懸念が売りを招いているようだ。 量子コンピューターとビットコインを巡っては、従来から海外インターネットメディアなどの間で議論を呼んできた。量子コンピューターが実現すると、保有ビットコインを守るパスワードにあたる「秘密鍵」を公開情報から解読できてしまう可能性があるという。暗号化して安全に送金するという仮想通貨の基幹技術が崩れることに

                                                    ビットコイン、7500ドル割れ 量子コンピューター警戒(写真=ロイター)
                                                  • 「時間」とはなにか?→「量子もつれ」によって作られた“副産物”かも イタリアの研究者らが提唱

                                                    このコーナーでは、2014年から先端テクノロジーの研究を論文単位で記事にしているWebメディア「Seamless」(シームレス)を主宰する山下裕毅氏が執筆。新規性の高い科学論文を山下氏がピックアップし、解説する。 X: @shiropen2 イタリアのフィレンツェ大学などに所属する研究者らが発表した論文「Magnetic clock for a harmonic oscillator」は、時間が量子もつれから生じるという理論モデルを提唱した研究報告である。研究チームの計算結果は、時間が物理的現実の基本的な要素ではなく、量子もつれの結果として生成されたものである可能性を示唆している。 (関連記事:「なぜ時間は過去→未来にしか進まない?」を“量子もつれ”で説明か 未解決問題「時間の矢」に切り込む) 一般相対性理論では、時間は宇宙の構造に組み込まれており、この物理的現実は時空に設定されている。こ

                                                      「時間」とはなにか?→「量子もつれ」によって作られた“副産物”かも イタリアの研究者らが提唱
                                                    • スイッチサイエンス、量子コンピュータ始めるってよ

                                                      2022年12月、販売開始しました! 深センSpinQ社の卓上量子コンピュータ。1テスラぐらいの磁力で2つの量子を閉じ込め、計算している @tks です。深圳の量子コンピュータ企業SpinQに行ってきました。 秋田先生のレポート量子コンピュータとのファーストコンタクトをしてきたをぜひ読みましょう デスクトップで量子コンピュータが動く! 深圳のSpinQ社は、世界で最初のデスクトップ量子コンピュータを商品化し、販売しています。NMRという、磁場と電磁波を加えて原子核の「スピン」の量子状態を操作・計測する方式を用いて量子計算を行う方式で、2020年に販売開始したGeminiと2021年末に販売を始めたGemini-Miniでは2つの量子ビット(Qubit)を操作します。 Gemini-miniの内部 かなり強い永久磁石2つの間に、液体の入ったチェンバーがあり、その液体に電磁波を当て、量子状態を

                                                        スイッチサイエンス、量子コンピュータ始めるってよ
                                                      • 現状では、量子コンピュータを使っても特に高速に組合せ最適化問題や量子化学計算、機械学習は解けない件 by Yuichiro Minato | blueqat

                                                        こんにちは。最近米国でも量子コンピュータにまつわる誇大広告が問題になっています。米国ではすでに量子アニーリングを行っている企業はほとんどおらず、量子ゲート方式しかやっていないのにもかかわらず、誇大広告とはどういうことでしょうか?また、量子コンピュータに参入してしまった企業はどのように対策をしているのでしょうか。 特に誇大広告として語られてしまっているのが、 1,組合せ最適...

                                                          現状では、量子コンピュータを使っても特に高速に組合せ最適化問題や量子化学計算、機械学習は解けない件 by Yuichiro Minato | blueqat
                                                        • まるでSF。量子系システムで、時間を巻き戻したり早送りすることができると科学者

                                                          まるでSFの世界の話のようだが、ヨーロッパの研究グループが、時間を逆転させて、過去の状態に戻す方法を考案したそうだ。しかも実験で実証することにも成功したという。 理論上は可能だったとしても、その方法で実際に人間を若返らせることは難しい。 それでも量子の世界なら、彼らが考案した「巻き戻しプロトコル」を利用することで、まるで映画を巻き戻すかのように、粒子を過去に戻すことができる。 ただ時間を逆行させるだけでなく、物理系の時間を奪うことで時間を早めることすらできるというが、一体どんな方法ならばそんなことが可能になるのだろうか? 録画映像を巻き戻すかのように時間が逆行 この驚くべき理論と実験結果は、オーストリア科学アカデミーとウィーン大学の研究チームによる一連の研究(『Physical Review X』『Quantum』『Arxiv』『Physical Review Letters』『Optic

                                                            まるでSF。量子系システムで、時間を巻き戻したり早送りすることができると科学者
                                                          • 千葉電波大の量子コンピュータ、難問の解答は全て「8」

                                                            千葉電波大学工学部が開発した量子コンピューターを使って、数学の難問を解かせたところ、全て「8」としか解答しないことがわかった。原因は現在調査中だが、量子コンピューターの原理に関わる可能性もあり、開発の進展に悪影響を及ぼすおそれがある。 量子コンピューターは、理論的には現在主流のスーパーコンピューター(スパコン)より高速に計算ができるコンピューター。世界各国で開発競争が加速しており、2019年、米グーグルが「スパコンで1万年かかる計算を200秒で終わらせた」と発表して、注目を集めた。 千葉電波大学工学部がダークウェブで買ったIBMのマニュアルを元に開発した量子コンピューター「ディープ・ホワイトQ」は、スパコンが苦手とする素因数分解の問題に挑戦。2つの素数をかけて作った13万桁の整数から、元の数を求める計算を行わせた。 0.8秒後、ディープ・ホワイトQが画面に表示した2つの素数は、どちらも「8

                                                              千葉電波大の量子コンピュータ、難問の解答は全て「8」
                                                            • 量子コンピュータとのファーストコンタクトをしてきた|akita11

                                                              量子コンピュータをつくっているSPINQへ行ってきた。自分は大学時代に量子力学は勉強したことはあるものの、量子コンピュータについては「なんかすごいもの」ぐらいの、ものすごく雑な知識しかなかったので、事前に「量子コンピュータが本当にわかる!」という本で予習。それによると量子コンピュータの基礎はこんな感じ。 普通のコンピュータ向けのアルゴリズムとは根本が違う、量子コンピュータでしか使えない、チートともいえるアルゴリズムが使える問題は劇的に速くなる可能性がある それ以外の問題は、普通のコンピュータと同じことしかできない(論理演算に基づく情報処理処理) 「情報処理」は、「量子ビット(qbit)の状態を外部から変化させる」操作。そのやり方は量子ビットの物理的実態によって様々。 結果を観測する時点で量子状態が収束するので結果は確率的。つまり1回「情報処理」をしたあとで結果を観測すると、可能な量子状態の

                                                                量子コンピュータとのファーストコンタクトをしてきた|akita11
                                                              • 「量子コンピュータはスパコンより速い」のウソと本当 日本設置の意義は

                                                                米IBMの商用量子コンピュータが7月27日に神奈川県川崎市に設置され、稼働を始めたことを多くのメディアが報じている。中には「スーパーコンピュータ超えの性能」といった見出しや、米Googleの研究結果を基に「スパコンで1万年かかる計算を3分20秒で解ける」と紹介する報道も見受けられるが、これらを文字通りに受け取ってしまうと、今回のニュースを正しく捉えられなくなる。 量子コンピュータを巡る過熱報道には、研究者たちが以前から苦言を呈している。大阪大学の根来誠准教授(量子情報・量子生命研究センター)もその一人で、「スパコン超えの性能」という報道に対し「タイトルがなあ……」とこぼす。

                                                                  「量子コンピュータはスパコンより速い」のウソと本当 日本設置の意義は
                                                                • 量子コンピューター超えの計算能力…東京理科大が開発した「LSIシステム」がスゴイ ニュースイッチ by 日刊工業新聞社

                                                                  東京理科大学の河原尊之教授らの研究チームは、回路線幅22ナノメートル(ナノは10億分の1)の相補型金属酸化膜半導体(CMOS)を使い、現在の量子コンピューターを超える計算能力を持つ大規模集積回路(LSI)システムを開発した。創薬や材料開発などに生かせる「組み合わせ最適化問題」を低消費電力かつ高速に解く。複数のチップを並列動作させることで機能を拡張し、大型の設備が必要なクラウドサービスを使わずに大規模な計算を可能にする。 河原教授らが開発したのは、複数のLSIチップをつないで機能を拡張できるスケーラブルな全結合型の「イジングLSIシステム」。これまで1チップ内に収まっていた演算機能を、複数の汎用CMOSに分けて接続することで拡張可能なことを実機で実証した。 22ナノCMOSで作製した演算LSIチップ36個と制御用FPGA(演算回路が自由に書き換えられる半導体)1個を搭載。現状のゲート方式の量

                                                                    量子コンピューター超えの計算能力…東京理科大が開発した「LSIシステム」がスゴイ ニュースイッチ by 日刊工業新聞社
                                                                  • 「反重力は存在せず」実験で結論 国際研究チーム - 日本経済新聞

                                                                    通常の物質と電気的に反対の性質を持つ「反物質」が、地球の重力によって落下することを欧米・カナダなどの国際研究チームが実験で確かめた。反物質には重力が引力ではなく反発力として働くとの説もあったが、今回の研究でそうした「反重力」が存在しないことが確定したとしている。成果は28日付で英科学誌ネイチャーに掲載された。スイス・ジュネーブにある欧州合同原子核研究機関(CERN)を拠点に反物質の研究を進める

                                                                      「反重力は存在せず」実験で結論 国際研究チーム - 日本経済新聞
                                                                    • 国産量子コンピュータ初号機、愛称は「叡」に 英語表記は“A” 理研が発表

                                                                      理化学研究所は10月5日、3月27日に稼働を始めた国産超伝導量子コンピュータ初号機の愛称を「叡」(えい、英語表記は“A”)に決めたと発表した。理研では4月7日から5月31日にかけて愛称を公募しており、全部で3781件の応募があったという。 叡に決めた理由について理研は「『叡』は聡明さを表し、量子コンピュータの情報処理における卓越性・先進性を表す」と説明。また英語表記については「アルファベット順の最初の文字である“A”とすることで、当該機が理研量子コンピュータ研究センター(RQC)にとっての、また国産量子コンピュータ初号機として日本にとっての、量子コンピュータ実機開発の第一歩であることも表現している」と解説した。 今後、「叡」のイメージに合うようなロゴマークも作成する予定。 理研は3月27日、叡を使った「量子計算クラウドサービス」の提供を開始している。非商用利用であれば、クラウド経由で64量

                                                                        国産量子コンピュータ初号機、愛称は「叡」に 英語表記は“A” 理研が発表
                                                                      • 量子コンピューター 新国家戦略案 ベンチャー10社以上創設へ | NHKニュース

                                                                        スーパーコンピューターをはるかにしのぐ「量子コンピューター」など、量子技術の国際的な開発競争が激化する中、政府は新たな国家戦略の案を取りまとめ、今後10年以内を目途に、量子技術をもとにしたベンチャー企業を10社以上創設するなどとしています。 量子とよばれる極めて小さな物質の世界で起こる特殊な物理現象を活用し、現在のスーパーコンピューターをはるかにしのぐ「量子コンピュータ-」や、解読不可能とされる暗号「量子暗号」など新しい情報通信技術が実現すると期待されています。 世界各国で量子技術の開発競争が激化する中、政府は、産学官の総力を結集して開発に取り組む必要があるとして、年内にも決定する新たな国家戦略の案を取りまとめました。 それによりますと、量子コンピューターや量子暗号など4つの重点分野について、今後20年程度の間に官民で推進する取り組みの行程表を作成し、政府直轄のプロジェクトなどとして、重点

                                                                          量子コンピューター 新国家戦略案 ベンチャー10社以上創設へ | NHKニュース
                                                                        • 量子コンピューター 大阪大学と富士通“新たな計算方式考案” | NHK

                                                                          次世代のコンピューターとして期待されている量子コンピューターについて、大阪大学と富士通は、実用化につながる新たな計算方式を考案したと発表しました。 この方式を用いればこれまで考えられていたより小さな計算機で従来のスーパーコンピューターを上回る計算ができる可能性があるということで、実用化を早める成果として注目されます。 実用化へ向けた研究開発が進む量子コンピューターは、桁違いに高い計算能力を持つとされていますが、性能を高めるには頭脳にあたる「量子ビット」を大規模化する必要があり、開発の課題となっています。 大阪大学と富士通のチームは、新たに考案した計算方式を用いることで「量子ビット」を従来ほど大規模化しなくてもスーパーコンピューターを上回る実用的な計算ができる可能性があると発表しました。 具体的には従来の方式で考えられていた100万量子ビットより1桁以上小さい6万量子ビットまで小型化できると

                                                                            量子コンピューター 大阪大学と富士通“新たな計算方式考案” | NHK
                                                                          • 素粒子Wボソンの質量 予測より大きく「標準理論」修正迫るか | NHK

                                                                            物質を構成する基本的な粒子である素粒子の1つについて、実験から解析された質量が予測より大きいという結果が得られたことを筑波大学などの国際的な研究グループが発表し、素粒子物理学の柱となっている「標準理論」の修正を迫る可能性があるとしてさらなる検証が必要だとしています。 「標準理論」は現在の素粒子物理学の柱となっている理論で、素粒子の種類や質量などの特性を説明できるとされています。 筑波大学の受川史彦教授などの国際的な研究グループは、力を伝えるWボソンと呼ばれる素粒子についてアメリカの研究機関で行った実験データを解析したところ、質量が標準理論の予測より0.09%ほど大きいという結果が得られたということです。 誤差は0.01%とこれまでで最も高い精度で解析しているため、「標準理論」の修正を迫る可能性があり、さらなる検証が必要だとしています。 今回の結果について、一部の研究者から新たな素粒子が存在

                                                                              素粒子Wボソンの質量 予測より大きく「標準理論」修正迫るか | NHK
                                                                            • 何度でも言う。AI開発に「失敗したので諦めます」は絶対にない。

                                                                              俺は量子コンピュータを研究してたからわかる。 意味がわからないか? お前らはAI以外の科学研究分野になんて興味もないから知らないんだろうが、この業界には「もはやだれもできると信じてないけど、政治的にやり続けなければいけない研究」というものがある。 量子コンピュータがそうで、20年前には「無理。できない。ほぼ間違いなく」という答えが出てる。 それでもなぜ研究を辞められないか? 「ほぼ」でなく「絶対」でない限り、もし万が一にも億が一にも「敵対勢力」に先に開発されたら安全保障に重大なリスクが出るから、というだけの話だ。 かつての原爆や宇宙開発と同じだ。 違うのは、これらがある程度の結果にたどりつくことで開発競争にもケリがついたことと違って、量子コンピュータはどこまで行っても何にもならないから、ただ無駄に研究費を食うだけなこと。 成果が出ていると強弁するために、「量子超越性」などと20年前はなかっ

                                                                                何度でも言う。AI開発に「失敗したので諦めます」は絶対にない。
                                                                              • 燃料がいらない!?日本を含む研究チームが史上初の「量子エンジン」試運転に成功! - ナゾロジー

                                                                                EMドライブと違って、こっちは本物です。 沖縄科学技術大学院大学(OIST)などで行われた研究により、量子状態の変化によって仕事量をうみだす量子エンジンの史上初の実証が行われました。 量子エンジンは通常のエンジンとは異なり、燃料や酸素といった外部の供給を必要とせず、密閉されたピストン内部の量子状態の変化だけで仕事量を持続的に出力することが可能です。 通常のエンジンがガソリンの爆発という古典的な物理現象に依存するならば、量子エンジンは量子状態の変化という量子力学的な物理現象からエネルギーを抽出していると言えるでしょう。 量子コンピューターは演算能力において魔法のような能力を発揮しましたが、量子エンジンではいったいどんな仕組みでエネルギーを出力しているのでしょうか? 研究内容の詳細は2023年9月27日に『Nature』にて「BEC-BCSクロスオーバーによる量子エンジン(A quantum

                                                                                  燃料がいらない!?日本を含む研究チームが史上初の「量子エンジン」試運転に成功! - ナゾロジー
                                                                                • 量子世界の謎「シュレーディンガーの猫」現象を〝肉眼で見えるサイズ〟で再現する装置が開発される | AppBank

                                                                                  粒子が「重なりあった状態」を再現 スイス連邦工科大学チューリッヒ校の物理学者は、量子コンピュータでよく使われる超伝導回路に共振器を結合し、エルヴィン・シュレーディンガーの有名な思考実験「シュレーディンガーの猫」を前例のないスケールで再現しました。重ね合わせの状態は、私たちの日常的な経験にはないものです。サッカーボールが落ちるのを見れば、ストップウォッチでその落下速度を追跡することができます。最終的な落下位置も明確で、飛行中の回転も一目瞭然です。サッカーボールが落下するときに目をつぶっても、これらの位置や挙動が異なるとは考えられません。しかし、量子物理学では、ボールが地面に落ちているのを見るまでは、位置、スピン、運動量などの特徴は確定しないのです。 これは量子物理学のコペンハーゲン解釈と呼ばれるもので、目に見えないシステムは、最終的な状態が観測されるまで、あらゆる可能性を秘めた状態で存在する

                                                                                    量子世界の謎「シュレーディンガーの猫」現象を〝肉眼で見えるサイズ〟で再現する装置が開発される | AppBank

                                                                                  新着記事