タグ

実装と設計に関するobata9のブックマーク (5)

  • チップ抵抗器の小型化が過度な温度上昇を招く(後編)

    「4.1.3.1 熱設計」では、チップ抵抗器を事例として取り上げ、熱設計の現状と対策を説明している。具体的には、「(1)チップ抵抗器の小型化・高電力化と熱問題」「(2)チップ抵抗器の温度上昇と基板放熱の関係」「(3)基板放熱に適した新たな温度基準と取組み」の3つの項目がある。前回は「(1)チップ抵抗器の小型化・高電力化と熱問題」の概要を述べた。今回は「(2)チップ抵抗器の温度上昇と基板放熱の関係」と、「(3)基板放熱に適した新たな温度基準と取組み」の概要を報告しよう。 抵抗器を密集させると定格の4分の1でも温度上昇が140℃に達する 前回でも述べたように、チップ抵抗は、周囲温度が定格値(70℃)よりも高い条件では、定格電力よりも低い負荷電力で使用することが求められてきた。70℃の負荷電力(定格電力)を100%とすると、120℃では定格電力の40%に負荷を下げなければならない。ただし、周囲温

    チップ抵抗器の小型化が過度な温度上昇を招く(後編)
  • チップ抵抗器の小型化が過度な温度上昇を招く(前編)

    チップ抵抗器の小型化が過度な温度上昇を招く(前編):福田昭のデバイス通信(451) 2022年度版実装技術ロードマップ(75) 今回から、第4章第1節第3項「部品実装・設計時の注意点」の概要を説明していく。この項は、「熱設計」「電気性能」などの4つのパートで構成される。 表面実装部品の実装・設計時の注意点を解説 電子情報技術産業協会(JEITA)が3年ぶりに実装技術ロードマップを更新し、「2022年度版 実装技術ロードマップ」(書籍)を2022年7月に発行した。コラムではロードマップの策定を担当したJEITA Jisso技術ロードマップ専門委員会の協力を得て、ロードマップの概要をコラムの第377回からシリーズで紹介している。 第448回から、第4章「電子部品」の概要説明を始めた。前々回と前回は、表面実装型電子部品(SMD)の中でインダクターと積層セラミックコンデンサー、チップ抵抗器の製

    チップ抵抗器の小型化が過度な温度上昇を招く(前編)
  • 量産現場における基本的な認識(3)ボイド対策

    はんだ付けに用いるリフロー炉の操作方法や、実装ラインの品質を管理する現場の人材育成の手法を解説する連載。今回は、ボイド対策について紹介する。 1. はじめに 通常のボイドは主にガス化したフラックスがフィレット内にとどまって発生する。リードが細い、または小さい場合には、はんだ量が十分であれば融点以上を長くすることでかなり解消することができる。これは、フラックス効果で溶融はんだの表面張力が抑えられ、熱対流することによってガスがフィレット内部から放出され、解消される。同時に、基板や部品リード表面からのガスも放出される。 BGA、CSPでは部品の下にはんだが印刷されるため、発生したガスは部品下部にとどまりやすくなるが、ボール分だけ部品と基板にすき間があるので、はんだの流動性が保持される限りにおいてはガスはボール内から外へ放出される。 逆に、リードレス部品やパワー系部品では部品と基板ランド間にすき

  • プリント基板設計ガイド

    ほぼ全てのエンジニアに関わりのあるプリント基板(PCB)の設計。にもかかわらず、PCBの設計は学校で教わることは少ない。ただ、PCB設計の初心者でも、「目的以上のものを作れる」という自信を持っていれば、高品質のPCBを作ることができます。「ドキュメンテーション」「設計順序と進め方」「最終チェック」にさえ気を付ければよいのです。 ほぼ全ての電子製品は複数枚以上のプリント基板(PCB)が使われています。PCBには、ICなどの部品が実装され、それら部品が相互に接続されています。PCBは、ポータブル電子機器、コンピュータ、エンターテインメント機器で大量に使われ、試験装置、製造装置、宇宙船でも使用されています。 結局、ほぼ全てのエンジニアPCBを設計しなければなりませんが、PCBの設計は学校で教わることではありません。それでも、エンジニア技術者、さらにはPCB設計の初心者でも、「目的以上のものを

    プリント基板設計ガイド
  • SMTリレーよ、お前もフラックスに弱いのか!

    電気電子機器の回路基板を設計/製造する上で、リレーとフラックス、および洗浄液が不具合の原因になることは多い。表面実装部品の1つであるSMTリレーについても、取り扱い方を間違えると同様の不具合が発生するので注意が必要だ。 筆者は35年以上にわたって、電気電子機器の回路基板を設計/製造する業務に携わってきた。それらの業務の中でも、数多くの製造不良を経験しているのが、リレーとフラックス、および洗浄液が関連する事例である。 かつては挿入部品タイプのリレーを使用することが多かったので、はんだディップする際に、部品面にあふれたフラックスが部品のすき間から内部に浸入し、リレーの動作不良を引き起こした。また、回路基板の洗浄時には、フラックスの溶け込んだ洗浄液がリレーのすき間から中に入り込むことが多い。この場合、洗浄液が乾燥した後で、部品内部に残ったフラックスがリレー内部の金属や配線を腐させる不良が発生し

    SMTリレーよ、お前もフラックスに弱いのか!
  • 1