多変数間の相関に基づくものであり、多変量解析に用いられる。新たな標本につき、類似性によって既知の標本との関係を明らかにするのに有用である。データの相関を考慮し、また尺度水準によらないという点で、ユークリッド空間で定義される普通のユークリッド距離とは異なる。 ある集団内の点が多変数ベクトル で表されるとき、その集団の変数ごとの平均値を縦ベクトルで と表し、集団の共分散行列(各変数間の共分散を配列した行列)を とすれば、ある点 からの集団へのマハラノビス距離は、以下のように定義される: 平方根の内側は、縦ベクトルの転置と行列と縦ベクトルの積であり、スカラー量(正値二次形式)で正である。 マハラノビス距離はまた、共分散行列が で同じ確率分布に従う2つの確率変数ベクトル、 と の間の隔たりの指標としても定義できる: 共分散行列が対角行列であれば(相異なる変数に相関がないということ)、マハラノビス距