本書はCC-BY-NC-NDライセンスによって許諾されています。ライセンスの内容を知りたい方はhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja でご確認ください。
タグ検索の該当結果が少ないため、タイトル検索結果を表示しています。
本書はCC-BY-NC-NDライセンスによって許諾されています。ライセンスの内容を知りたい方はhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja でご確認ください。
Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
type:Article この論文では、人びとが恋愛をどのようにはじめて、それを結婚にどう結びつけているのかを、ソーシャル・キャピタルの視点から検討する。そうした恋愛の壁と結婚の壁における社会的格差を分析することで、家族形成プロセスを解明し、少子化防止にどのような支援が必要かをかんがえる。そこで、ランダムサンプリング調査によって恋愛経験を計量的に測定した。その結果、恋愛の壁をこえて恋人と交際するのに教育や職業といった社会階層は影響をもたず、恋愛はすべての人に平等にひらかれていた。それよりむしろ、成人前の友人関係、部活動、恋人といったソーシャル・キャピタルがその後の交際人数を増加させた。さらに、交際人数が多ければ、とりわけ1人とでも付きあったことがあれば、結婚の壁を乗りこえるチャンスがふえた。これらの結果は、ソーシャル・キャピタルを蓄積することが、恋愛経験や家族形成に役だつことを示唆する。
クラウド市場でアリババがIBMを抜き去り、AWS、Azure、Google、アリババの4強が明確に。2020年第4四半期、Synergy Research Groupとcanalys クラウド専門の調査会社Synergy Research Groupは、2020年第4四半期のクラウドインフラに関する調査結果を発表しました。 クラウドインフラとは、IaaS、PaaS、ホステッドプライベートクラウドを合わせたものと同社は定義しており、この1年で市場全体が35%成長し、市場規模は約37ビリオンドル(370億ドル、日本円で約4兆円)に拡大しました。 アリババがIBMを抜き去って4位に 主要なクラウドベンダのシェアを見ると、Amazon Web Services(AWS)が約32%で首位。次がマイクロソフトで約20%。Googleや約9%で3位、4位にはアリババが約6%で位置しています。 5位にIB
非営利調査機関の米Pew Research Centerは5月17日(現地時間)、「When Online Content Disappears」(オンラインコンテンツが消滅するとき)と題する調査レポートを公開した。「2013年に存在したWebページの38%が10年後にはアクセス不能に」というサブタイトルがついている。 この調査では、非営利プロジェクト「Common Crawl」のリポジトリから2013年から2023年までの毎年の約9万ページ、合わせて約100万のWebページをサンプリングした。調査結果は、この期間の全ページの25%が現在アクセス不能であることを示している。このうち、16%はルートドメインはアクティブだがアクセスできず、残り9%はルートドメインが廃止されたものだ。 政府の公的サイトでは、サンプリングした約50万ページのうち、21%に少なくとも1つのリンク切れが含まれていた。
調査会社のSynergy Research Groupは、2019年第4四半期における日本や中国を含むアジア太平洋地域のパブリッククラウド市場に関する調査結果を発表しました。 これは各パブリッククラウドのIaaSとPaaSの売り上げをベースに比較したもの。 日本の国内市場を見ると、トップはAmazon Web Services(AWS)、2位はマイクロソフトと、グローバル市場での順位通りになっていますが、3位にはGoogleを上回って富士通がランクインしています。 そして4位にGoogle、5位にNTT、6位にソフトバンクと、3位以下に国内ベンダが顔をだしている点が特徴でしょう。 中国市場は日本以上に国内ベンダが強さを見せています。1位がアリババ、2位がテンセント、3位がバイドゥ、4位はシンネットが運営するAWSのサービス、そして5位にチャイナテレコム、6位がチャイナユニコムとなっており、
いやー、今年のアニメも面白いな~ ひぐらしのなく頃に~業~ もやり始めたし、次回も視聴してからでいいか、ブログ書くの。締め切りいつだっけ。まだ先だろうきっと・・・。 ん?誰か来たかな。 どうぞー。 /|∧_∧| ||. (・ω・#´| <記事終わったの?、ねえもう納期なんだけど。 ||oと. U| 納期守って言ったよな? あぁぁん? || |(__)J| ||/彡 ̄ ガチャ げっ!・・いや、 あ、 はい。どうも、編集長の益山氏。どうしたんですか。こんな早朝から。。 え?・・・なに?ブログ?締め切り?( ^ω^)・・・ あーーうん、うん 書いてるよ。ちゃんと。 はっはっ・・・へぇあっ。 益山氏「嘘だっっ!!」・・・ やべぇ・・バレてる。。。 はい? え?納期間に合わないだろだって?! はっ!はっ!はっ!いやいや間に合いますって。 ・・ん?益山氏、いまどこから、それ出した。え?家から
IaaS+PaaSクラウド市場、AWSの首位ゆるがず。AWS、Azure、Google、Alibabaの上位4社で市場の7割超。2019年第3四半期、Synergy Research Group この1年で同市場全体は37%成長していると報告されていますが、そのなかでAmazon Web Services(AWS)は約40%のシェアをほぼ下げることなく維持し、引き続き他社を大きく引き離した首位の座にいます。 そのAWSを追い上げるのがマイクロソフトで、2019年第3四半期の時点で20%弱のシェアを保持。それに続く10%弱のシェアがGoogle、6%程度がAlibabaとなっています。 高い成長率を保ち続けるこの市場で上位4社がシェアを維持もしくは上昇させ続けるということは、それ以外の多くのクラウドベンダがシェアを失っていることを意味しています。 上記のグラフのグレイの点線(Others)は
本書は京都大学の全学共通科目として実施されるプログラミング演習(Python)の教科書として作成されたものです. 2023年度版では2022年度版での誤植などを修正し,読みにくい文章などを改訂し,2022年の授業の中で補足した説明などを追記しました.また,3章で例題として取り上げた平方根の計算については4章として独立させ加筆しました.また,制御構造の章(6章)ではPythonプログラムの終了について追加し,7章までの力試しの課題としていくつかの演習問題を8章として追加しました.さらに,タートルグラフィクスの章(10章)ではタートルの形の定義の方法を追加するとともに,11章ではtkinterの導入のための簡単な例題を追加て記述を見直すとともに,ウィジェットでの画像表示を追加しています.19章では関数呼び出しの中で生じるエラーについての例を追加しました. ソースコードの記載にK2PFEフォント
#LayerX_Newsletter 2021-02-19 TL;DR Clubhouseは極めてシンプルなアーキテクチャ 音声データはAgoraを、リアルタイム性の高い情報の扱い(ルームの中など)はPubNubを利用 音声データが暗号化されていないなどセキュリティ面での課題も多い Clubhouseは招待制の音声配信SNSで、2020年Aplha Exploration社が開発したこのサービスは、つながりがある人同士でラジオ放送のように自由に会話を楽しんだり、興味ある人はその会話を傍聴、さらには会話に飛び入り参加もできる特徴がある。2021年に入り世代・国籍・性別を問わず爆発的人気となっており、日本では2021年1月からスタートアップ界隈を中心に一気に話題が広がっている。また、テスラの創業者や有名人・著名人などが利用しはじめたことで大きな注目を浴びた。今回はClubhouseはどのような
NotebookLM is your personalized AI research assistant powered by Google's most capable model, Gemini 1.5 Pro.Try NotebookLM Collaborate with a virtual research assistantWhen you upload the documents that are central to your projects, NotebookLM instantly becomes an expert in the information that matters most to you.
初めまして、システム部の劉(りゅう)です。 今はGMOリサーチのクラウドパネルのシステム連携などを対応しています。2014年入社以来、海外リモートワークや産休育児休など経験して、現在も時短で勤務させていただいています。 先日4/2(金)、GMOリサーチのオンラインテックカンファレンスが開催されました。 私は「Zoomが安定したサービスを提供している方法」についてのLT(Lightning talk)を発表しましたので、今日はブログのほうでも同じ内容を共有させていただこうと思います。 Zoomの利用者は約5ヶ月で30倍に 2020年、新型コロナウイルス の影響で、世界中で在宅勤務のニーズが急増しました。 そこで色々なオンラインツールやウェビナーが大活躍しています。 その中で、Zoomは特に注目されており、プライベートの繋がりから、仕事の場面まで広く活用されています。 弊社でも、日々Zoomミ
Home Blog Pythonのlinter/formatterを誰でも手軽に設定できるようにするためのPFN社内ツール “pysen” の紹介 Python向けのlinter/formatter設定ツール「pysen」を pypi.org および github.com で一般公開しました。 このツールは主にPython向けのlinter/formatterの設定を一元管理し、Preferred Networks社内でよく使われているツール環境を誰でも簡単に設定できるように支援するツールです。チームごとに分散しうるようなツールに関するノウハウをコードとして集約し、PFN社内での共有を促進させることを目的として開発しています。pysenは実際にPFN社内で使われており、2020年4月に開発がスタートしてから、2021年3月現在でおよそ100を超える社内リポジトリに導入されています。 上図:
Gen-2: Generate novel videos with text, images or video clips A multimodal AI system that can generate novel videos with text, images or video clips. No lights. No camera. All action. Realistically and consistently synthesize new videos. Either by applying the composition and style of an image or text prompt to the structure of a source video (Video to Video). Or, using nothing but words (Text to
本投稿はPFN2022 夏季国内インターンシップに参加された江平智之さんによる寄稿です。 はじめに PFN2022 夏季国内インターンシップに参加していた江平智之です。現在修士1年で、大学では分散システムやクラウド技術について研究しています。 今回のインターンシップでは、「JP04. Kubernetesにおけるコンテナ実行環境の改善」というテーマでコンテナ起動時間の高速化に取り組みました。 背景 PFNでは機械学習基盤としてKubernetesクラスタを使用しており、リサーチャやエンジニアはKubernetesクラスタ上のPod内で機械学習やシミュレーションなどの計算を行っています。スケジューラによってノードにアサインされた後にPod内にコンテナが起動されますが、ノード上にコンテナイメージのキャッシュがない場合にコンテナ起動が遅いという問題がありました。計算はPFNの研究開発における主要
デザイナーのハシモトです。 今日は、<フリー素材配布サイト>をご紹介します。 資料に、ブログに、SNSに、テレワーク中のビデオ会議バーチャル背景にぜひご活用ください! また、現在コロナウィルスの影響もあり、各素材サイト マスク ウィルス 手洗い・うがい ソーシャルディスタンス STAY HOME オンライン飲み会 TAKE OUT …などを扱う素材が多くみられました。 この状況で無料で提供してもらえることはとてもありがたいですね。 フリー素材を使用する上での注意点 利用規約をしっかり確認し適切に利用する! 超重要です。 今回の記事で一番重要です。 「フリー素材」と聞くと、”フリー”=”なんでも自由に使えるもの”と勘違いしそうになりますが、各サイト、各作品によって利用規約が違います。 作者の方々を尊重する意味でも、きちんと規約を確認し適切な利用をしましょう。 「フリー素材」の利用制限・条件付
脅威インテリジェンスにおけるIPアドレスの取扱 GDPR対個人情報保護法(令和2年改正法-個人関連情報) 2021.10.1 GDPR, データ保護/プライバシ, 情報セキュリティ, 情報共有, 通信の安全/プライバシ 投稿者: Ikuo ネットワークに攻撃を仕掛けているものがいて、そのIPアドレスがわかっているとしたときに、そのIPアドレスをネットワーク管理者間で共有したり、また、顧客に脅威インテリジェンス情報として共有することは、各国においてデータ保護法制の関係で問題ないのでしょうか。データ保護論者は、そのようなIPアドレスを共有するときに、攻撃者の同意をとならなければならないとかいわないよね、という問題があります。 まずは、論点として、IPアドレスって「個人情報」なの、「個人データ(Personal Data) @GDPR」なの?という問題です。 以下、便宜上、個人データと呼びます。
Googleの研究部門であるGoogle Researchが、地球の大気をシミュレートする機械学習モデル「NeuralGCM」を開発したことを発表しました。このモデルは、従来の物理ベースのモデリングと機械学習を組み合わせることで、シミュレーションの精度と効率を向上させており、2〜15日間の天気予報において従来のモデルよりも正確な結果を出し、過去40年間の気温をより正確に再現することができます。 Fast, accurate climate modeling with NeuralGCM https://research.google/blog/fast-accurate-climate-modeling-with-neuralgcm/ Google AI predicts long-term climate trends and weather — in minutes https://w
This post is about why we need a coroutine package for Go, and what it would look like. But first, what are coroutines? Every programmer today is familiar with function calls (subroutines): F calls G, which stops F and runs G. G does its work, potentially calling and waiting for other functions, and eventually returns. When G returns, G is gone and F continues running. In this pattern, only one fu
グローバルのクラウドインフラ市場シェア、AWSとAzureの差が9ポイントにまで縮まる。2023年第1四半期、Synergy ResearchとCanalysの調査結果 調査会社のSynergy Research GroupとCanalysは、2023年第1四半期時点のグローバルにおけるクラウドインフラのシェアをそれぞれ発表しました(Synergy Research Group、Canalys)。 クラウドインフラとは、IaaS、PaaS、ホステッドプライベートクラウドを合わせたもの。 両社の調査結果ではいずれも過去1年のクラウドインフラ市場の成長率を20%前後としており、これまで30%前後という高い成長率で推移してきたクラウド市場が、世界的な不景気の影響を受けて急速に減速していることが示されました。 AWSとAzureのシェアの差が2桁を切って9%に そうした中で、2023年第1四半期の
本書は京都大学の全学共通科目として実施されるプログラミング演習(Python)の教科書として作成されたものです. 2021年度版では2020年度版での誤植などを修正し,読みにくい文章などを改訂し,2020年の授業の中で補足した説明などを追記しました.また,2020年度版では10章に置いていたリストの紹介を4章に移動し,リストを対象とするfor文の扱いを見直しています.これまでの授業実践に参画いただいた岡本雅子先生に本書の改訂から新たに共著者として加わっていただきました. 2021年度版ではソースコードの記載に新たに開発したK2PFEフォントを用いています. K2PFEフォントは著者のうち喜多と京都市立芸術大学教授,辰巳明久氏,同非常勤講師,楠麻耶氏,京都大学助教,元木環氏との共同研究により開発いたしました.また,同フォントの開発は,一部,科研費-学術研究助成基金助成金(課題番号21K028
ホーム ニュース 薬剤調合クリッカー『Idle Research』Steamなどで無料配信され盛り上がり模様。放置で楽しむインフレの快楽 デベロッパーのCryptoGroundsは8月1日、『Idle Research』をPC(Steam/itch.io)およびAndroid/iOSとブラウザ(CrazyGames)向けに配信開始した。基本プレイ無料で、Steamでは早期アクセス配信としてのリリースとなっている。 『Idle Research』は、薬剤調合によりエネルギー(Energy)を生み出す、いわゆるクリッカー/放置系ゲームだ。本作の主な目的は、とにかくエネルギー生産量を高めること。プレイヤーは最初に、赤い薬剤の入ったフラスコを研究・生産可能。赤いフラスコからは、稲妻マークで示されるエネルギーが発生する。最初期は地道にクリックしての赤フラスコ生産となるものの、すぐにインフレへの道が始
はじめに 研究しなきゃなのはわかってるが何から始めればいいんだ、とりあえずでモデル組んだけどまともに動かん。なにがダメなのか分からねぇ、どこをどういじれば何がどう変わるんだ、、、と日々悲鳴をあげている中、Google Researchの研究者による、Deep Learning Tuning Playbook( https://github.com/google-research/tuning_playbook )が公開されました。 どうやら深層学習ネットワークをチューニングする際の考え方やら注意点を、Googleの神たちがまとめてくださっているようです。これは読んでおこうと思い、自分の読解とメモついでに和訳してみることにしました。 【注意】 翻訳アプリそのままではなく、一応多少自分なりに解釈して理解したいということで、一部抜けてたり言い回しが違ったり、そのまんま和訳になっているとは限りませ
本記事は、2023年夏季インターンシッププログラムで勤務された竹田悠哉さんによる寄稿です。 はじめに 2023年度のPFN夏季インターンに参加した、東京大学大学院工学系研究科の竹田悠哉と申します。学部では画像生成の研究をしていましたが、技術の社会実装をより俯瞰的に学びたいと思い、現在は技術経営戦略学専攻で教育工学の研究をしています。 インターンでは「機械学習技術の社会実装」をテーマに、LLM(Large Language Model)にドメイン知識を習得させることに取り組みました。様々な設定において、主に英語で学習されたモデルであるLLaMA2に対して日本語のデータでのFine-tuningを行い、LoRAやInstruction Tuning、ドメイン知識の習得に関する知見を得ることができたと思います。本記事では、そこで利用した技術の紹介と、日本語におけるドメイン知識の習得に関する実験、
こんにちは! GMOリサーチ株式会社の向井と申します。 システム部でプログラマーをしています。 また、社内外問わず、勉強会の開催や運営などを行なっています。 みなさまはstay home期間、何をして過ごされていたでしょうか? 私は特に何もする事が無いので、家で本を読んで過ごしておりました。 特に集中して読んでいたのがプログラミング言語Pythonについての本です。 私自身Python歴は長いのですが、インフラのバッチ処理を作ったり、1モジュールで完結するようなプログラムしか作った事がありませんでした。 そこで、もう少しPythonについての理解を含めたいと思い、Stay homeを機に色々なPythonの書籍を読み漁ってみました。 また、最近社内でPyhton勉強会をしたのですが、そこでオススメのPythonの本があったら教えてほしいとのリクエストがあり。 そんな経緯から今回、ブログにオ
本記事は、2022年夏季インターンシッププログラムで勤務された早川知志さんによる寄稿です。 はじめまして。2022年度のPFN夏季インターンに参加した早川知志です。普段はオックスフォード大学で数学(確率論・数値解析)の博士学生をしており、確率測度の離散化やそれにまつわる理論や応用に興味があります。 今回は、大学でやっていることとは趣旨を変えて、深層学習のエンターテインメント応用として二次元キャラクターの学習・生成タスクに取り組みました。 学んだキャラクターのCLIP embeddingを用いた生成例 1. Motivation オリジナルのキャラクターを描くときに角度や表情を微調整するのには途轍もない労力が必要です。筆者はイギリスでのロックダウン以来趣味でイラストや漫画を描こうとすることが増えたのですが、その過程でこのことに気付きました。生成モデルの力を借りて今までに描いたことのない構図で
大規模言語モデル (LLM) は日進月歩で進化しており、日本語の理解能力についても多くの言語モデルがしのぎを削っています。先日PFNからも、日英2言語を併せた能力で世界トップレベルの性能を示す言語モデルPLaMo-13Bを公開*しました。 一方で、LLMを実際のタスクに適用する場合には、事前学習モデルやファインチューニングによる改善もさることながら、プロンプトの違いが性能を大きく左右します。本稿ではプロンプトを自動的にチューニングすることによって、LLMの能力を最大限に引き出し、与えられた課題の精度をどこまで高められるのかを検証します。 * 本稿で解説するプロンプトチューニング技術は、PLaMo-13B公開時の性能評価には用いていません。 プロンプトエンジニアリングについて LLMを使ったチャットシステムでは、ユーザーからの問い合わせ内容を改変してLLMに入力することがあります。例えば、図
脆弱性の開示の枠組を深く勉強したい人に-ワクチンの予約システムの報道に関して 2021.5.19 情報セキュリティ, 脆弱性対応 投稿者: Ikuo 世間では、ワクチンの予約システムについて新聞社が、実際の接種券にはない架空の数字を入力しても予約可能だと報じたことに関して、脆弱性の開示の枠組を遵守すべきではないか、といういい方をする人もでており「脆弱性の開示の枠組」に興味が増しているように思います。そこで、この「脆弱性の開示の枠組」を正確に理解してもらうために基礎的なお話をまとめます。 ソフトウエアの脆弱性を不特定多数に開示する前に、そのソフトウエアの開発者に連絡することが求められていますという考え方は、いわゆる「協調的な脆弱性の開示(CERTのガイドを紹介しておきます-https://resources.sei.cmu.edu/asset_files/SpecialReport/2017
このリポジトリでは、株式会社バンダイナムコ研究所が収集したモーションキャプチャのデータセットを公開しています。 ゲームや映画といったメディアはリアルで表現力豊かなキャラクターアニメーション表現を追求しており、多様なスタイルのモーションをAIで生成することに長年の関心があります。コンテンツ制作の規模が大きくなるにつれ、モーションキャプチャなどの方法を使用した収録で多様なモーションを揃えられなくなる将来が予想されます。近年注目を集めているのは、特定のコンテンツを含むクリップ内のモーションを、同じコンテンツを維持しながら別のスタイルの別のモーションに変換することを目的としたモーションスタイル転送(Motion Style Transfer 以下、MST)です。モーションはコンテンツとスタイルで構成され、コンテンツはモーションのベースであり、スタイルはモーションに関連付けられたキャラクターの気分や
リサーチャーの南です。機械学習のトップ会議のひとつであるICLR2020に、2019年度PFN夏季インターンのCasey Chuさん、PFN技術顧問の福水健次教授と共同で書いた論文が採択されました。 Casey Chu, Kentaro Minami and Kenji Fukumizu. Smoothness and Stability in GANs. In International Conference on Learning Representations (ICLR), 2020, to appear. 論文リンク 本記事では、上記論文の内容を簡単に紹介します。 背景: GANと安定化技術 周知のとおり、敵対的生成ネットワーク (GAN, [1]) はとても強力な生成モデルです。例えば、GANによって自然な高解像度画像を生成できることが知られています。下記は高解像度画像生成にお
システム部のはたです。 GMOリサーチには2年ぐらい前に入社して、主にシステム開発をやっています。 趣味は音楽鑑賞と旅行とキャンプで、焚火を見ながらお酒を飲んでのんびり過ごすのにハマってます。 今回は、ミャンマー語フォントの問題についてお話をしたいと思います。 GMOリサーチでは、国内だけではなく、海外ビジネスの展開にも力を入れており、2019年にはミャンマーへ進出し、リサーチサービスの展開を行ってきました。 そんな中、ミャンマー語のWebアンケートサイトを作ることになったのですが、ある問題に直面しました。それは「ミャンマー語のWebサイトの文字化け問題」です。 ということで、早速どんな事象が発生したのかご紹介していきます。 ◆ ミャンマー進出の背景 まず、ミャンマー進出の背景から簡単にご説明させていただきます。 弊社では生活者の方々の声を企業に届けること、そしてそのデータを企業のマーケテ
Preferred Networks エンジニアの坂田です。普段は社内向けの GPU サーバークラスタの運用管理の業務などをやっております。 先日、DevOpsDays Tokyo 2021 というイベントで、弊社 須田と一緒に PFN が Kubernetes を使って GPU クラスタを運用する中で経験してきた障害とその対応の自動化や、Kubernetes クラスタそのものの管理・アップグレードの自動化の取り組みについてご紹介しました。 SlideShare: PFNのML/DL基盤を支えるKubernetesにおける自動化 / DevOpsDays Tokyo 2021 本エントリでは、その中でご紹介した障害の事例の中から、コーナーケースとして対応に悩まされた Uninterruptible Sleep という状態に入ったプロセスの扱いについてご紹介します。 はじめに PFN のクラ
1. はじめに 2020年6月22日深夜(日本時間)にリモート開催されたISC2020のTOP500セッションで、PFNが作った深層学習用スーパーコンピュータ、MN-3が21.11 GFlops/WのHPLベンチマークの実行性能をあげ、Green500ランキングで500システム中No.1になりました(写真1)。開発チームの一員として、ここに至るまでの苦労の連続を思うと、とても嬉しいです。 なお、同日発表されたTOP500, HPCG, Graph500, HPL-AIベンチマークでは、理研に設置された「富岳」システムが各々500システム中1位、68システム中1位、10システム中1位、2システム中1位と、1位を多数達成したことも、ポスト京プロジェクト(富岳と命名される前の名前)の前座プロジェクトや、システム評価にかかわったものとして嬉しく思います。 このBlogでは最近増えてきてちょっと混乱
こんにちは!システム部の田代と申します。 今年の4月、コロナ禍の中で入社して以降ほぼリモートで仕事をしています。 メンテナンスのために久しぶりに出社したらオフィスのフロアを間違えました。 業務では専らPHPを使っていますが、プライベートではiOSアプリを作っています。 今回はビーコンを使ったアプリを作ってみたく、その過程を記事にしようと思います。 まずはビーコンの基礎知識から。 ビーコン(Beacon)とは ビーコンは、地上にある無線局などから発射される電波(あるいはIR(赤外線)のような高周波の電磁波)を航空機・船舶・自動車などの移動体に搭載された機器で受信することにより、位置をはじめとした各種情報を取得するための設備である。 Wikipediaより引用 というものですが、モバイル機器で使用するビーコンは、主に低消費電力の近距離無線技術「Bluetooth Low Energy」(BLE
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く