サクサク読めて、アプリ限定の機能も多数!
トップへ戻る
アメリカ大統領選
monachanpapa-scripting.com
ツリー形式で示すとこんな感じです。 マスク └── する └── なぜなら ├── マスク警察 │ ├── うるさい │ └── 防止 └── 花粉症 ├── うるさい └── 防止 さてここで! 「マスク する なぜなら 花粉症 うるさい」という文は、いかにもおかしな文章です。「花粉症」までは、まぁいいでしょう。しかし、「花粉症 うるさい」はもう錯乱していますよね、文学的です! これはなぜか。定義通りに過去の状態を全く考慮していないし、「花粉症」に連鎖するのは、「うるさい」、「防止」という単語から2分の1の確率だけで決まるからです。 作成手順概要 さぁ、簡単なイメージがつかめたところで、Python を使って実装していきます。マルコフ連鎖自体はmarkovify という専用ライブラリがあるので、それを使えば簡単にできてしまいます。しかし、今回はマルコフ連鎖の仕組みを体感をするため
こんにちは!monachan_papaです。 前回までで、形態素解析の基本的なことについてやりました。 男は黙ってサッポロビールを形態素解析してみよう!【Pythonによる自然言語処理超入門】 川端康成『雪国』の冒頭を形態素解析してみよう!【Pythonによる自然言語処理超入門】 さて、このシリーズで使っている形態素解析器はMeCabを採用していますが、MeCabの辞書について今回ひとつ取り上げてみたいと思います。 MeCabの辞書とは? 形態素解析は、辞書によって行われています。とてもたくさんの単語情報を網羅したデータベースみたいなものです。このデータベースがあるからこそ初めて形態素解析ができるといえるでしょう。 import MeCab t = MeCab.Tagger() print(t.parse('男は黙ってサッポロビール')) 男 名詞,一般,*,*,*,*,男,オトコ,オトコ
このページを最初にブックマークしてみませんか?
『Pythonic & Art』の新着エントリーを見る
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く