サクサク読めて、アプリ限定の機能も多数!
トップへ戻る
今年の「かわいい」
blog.brains-consulting.tech
こんにちは!ブレインズコンサルティングの大下です。 今回は、「あの論文を検証してみた!」のシリーズ第2回、BERTの可視化実験を紹介します。 BERTの枠組みで学習したTransformer (Self-Attention) が、入力系列のどこを注目しているのか、を可視化し、解釈を試みます。 先月ぐらいに、政府が考えるAIの7原則が記事になっていました。 その中に、「企業に決定過程の説明責任」というものがあり、一部で話題になっていたと記憶しています(批判が多かった印象)。 日本の戦略を考えると、量で質をカバーする方法では、もはや米国、中国には叶わないということもありそうなので、 仮に少量でも、日本らしい?質(==説明責任による安心・安全)を担保して差異化を図りたい、という流れになるのかもしれません。 ということで、説明責任に繋がるといいなぁという願いを込めて、BERTのアテンションの可視化
はじめまして、ブレインズコンサルティングの大下です。 ブレインズコンサルティングでは、過去Blogger で、技術的な情報を公開していましたが、長らく更新が途絶えていたこともあり、 そちらを廃止し、こちらで、新たなテックブログとして開始することになりました。 記念すべき初回記事は、「あの論文を検証してみた!」のシリーズ第1回、今(2018年11月)、話題沸騰中(?)の 論文 [1810.04805] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding の解説です! なにやら、複数の自然言語処理タスクでSOTAをたたき出して、すごいらしいということは、各種記事により、すぐわかったのですが、具体的にどういう仕組みですごいことができているのか、よくわからなかったので、「論文とGitHub
このページを最初にブックマークしてみませんか?
『blog.brains-consulting.tech』の新着エントリーを見る
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く