サクサク読めて、アプリ限定の機能も多数!
トップへ戻る
アメリカ大統領選
shiten4.hatenablog.com
データを教師なしで変換する行列分解手法、主成分分析(PCA: Principle Component Analysis)、独立成分分析(ICA: Independent Component Analysis)、スパースコーディング(SC: Sparse Coding)の比較。 行列分解手法の明確な定義は知らないが、ここではデータを表すベクトルの集合を横に並べた行列をとして、基底を表す行列と係数のを表す行列の積、 に変換する手法とする。これはすなわち、元のデータをの列にあたる基底の線形和、 で表現することを意味する。はデータの基底で表される空間での表現に相当することになる。 ここでが決まっていれば、を求めるのは線形の逆問題(が正則な正方行列であればその逆行列をにかけてやれば良い)となるが、行列分解問題では双方を同時に求める問題となる。自由度も高くなり、、は一意には決まらない。したがって、、に
このページを最初にブックマークしてみませんか?
『shiten4.hatenablog.com』の新着エントリーを見る
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く