サクサク読めて、アプリ限定の機能も多数!
トップへ戻る
アメリカ大統領選
qiita.com/age884
Googleが2018年10月に発表し、大いに話題となった自然言語処理モデルBERT。このBERTのモデルから単語ベクトルが抽出できるようなので、色々と調べてみようと思います。 BERTの単語ベクトルの特徴 単語ベクトルといえばWord2Vecですが、Word2Vecの単語ベクトルは、異なる意味の単語でも字面が同じならば全て同じ値になってしまうという欠点があります。 例えば下のような文があった場合、この文の最初の「HP(ヒューレット・パッカード)」と2つ目の「HP(ホームページ)」は別の意味を持つ単語ですが、ベクトルとしては同じになります。 HP社は、2019年11月18日に新製品をHPで発表した。 ところが、BERTの場合は、2つの「HP」のベクトルは異なる値になります。それだけではなく、下の例のような同じ意味の3つの「HP」も、すべて異なるベクトルになります。 HP社は、HP社と、HP
このページを最初にブックマークしてみませんか?
『qiita.com』の新着エントリーを見る
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く