はてなブックマークアプリ

サクサク読めて、
アプリ限定の機能も多数!

アプリで開く

はてなブックマーク

  • はてなブックマークって?
  • アプリ・拡張の紹介
  • ユーザー登録
  • ログイン
  • Hatena

はてなブックマーク

トップへ戻る

  • 総合
    • 人気
    • 新着
    • IT
    • 最新ガジェット
    • 自然科学
    • 経済・金融
    • おもしろ
    • マンガ
    • ゲーム
    • はてなブログ(総合)
  • 一般
    • 人気
    • 新着
    • 社会ニュース
    • 地域
    • 国際
    • 天気
    • グルメ
    • 映画・音楽
    • スポーツ
    • はてな匿名ダイアリー
    • はてなブログ(一般)
  • 世の中
    • 人気
    • 新着
    • 新型コロナウイルス
    • 働き方
    • 生き方
    • 地域
    • 医療・ヘルス
    • 教育
    • はてな匿名ダイアリー
    • はてなブログ(世の中)
  • 政治と経済
    • 人気
    • 新着
    • 政治
    • 経済・金融
    • 企業
    • 仕事・就職
    • マーケット
    • 国際
    • はてなブログ(政治と経済)
  • 暮らし
    • 人気
    • 新着
    • カルチャー・ライフスタイル
    • ファッション
    • 運動・エクササイズ
    • 結婚・子育て
    • 住まい
    • グルメ
    • 相続
    • はてなブログ(暮らし)
    • 掃除・整理整頓
    • 雑貨
    • 買ってよかったもの
    • 旅行
    • アウトドア
    • 趣味
  • 学び
    • 人気
    • 新着
    • 人文科学
    • 社会科学
    • 自然科学
    • 語学
    • ビジネス・経営学
    • デザイン
    • 法律
    • 本・書評
    • 将棋・囲碁
    • はてなブログ(学び)
  • テクノロジー
    • 人気
    • 新着
    • IT
    • セキュリティ技術
    • はてなブログ(テクノロジー)
    • AI・機械学習
    • プログラミング
    • エンジニア
  • おもしろ
    • 人気
    • 新着
    • まとめ
    • ネタ
    • おもしろ
    • これはすごい
    • かわいい
    • 雑学
    • 癒やし
    • はてなブログ(おもしろ)
  • エンタメ
    • 人気
    • 新着
    • スポーツ
    • 映画
    • 音楽
    • アイドル
    • 芸能
    • お笑い
    • サッカー
    • 話題の動画
    • はてなブログ(エンタメ)
  • アニメとゲーム
    • 人気
    • 新着
    • マンガ
    • Webマンガ
    • ゲーム
    • 任天堂
    • PlayStation
    • アニメ
    • バーチャルYouTuber
    • オタクカルチャー
    • はてなブログ(アニメとゲーム)
    • はてなブログ(ゲーム)
  • おすすめ

    Google I/O

『mikiokubo.github.io』

  • 人気
  • 新着
  • すべて
  • アナリティクス(データサイエンス)練習問題集 | analytics

    3 users

    mikiokubo.github.io

    はじめに 作者のページ My HP 世の中には例題を読ませるだけの教育が氾濫しているが、本当にできるようになるためには、練習が欠かせない。ここでは、Pythonを用いたデータアナリティクスを本当に自分でできるようになるための、練習問題を集めた。 できれば解答をコピペするのではなく、自分の力で考え、自分で試行錯誤をし、自分で書いてみることを勧める。 Python基礎 (1) Python基礎 (2) Python基礎 (3) Jupyter入門 Jupyerでのデバッグのやり方 数値計算モジュール NumPy データ解析モジュール Pandas 可視化モジュールmatplotlib 可視化モジュール plotly データを可視化するための方法 (Plotly Express) 科学技術計算モジュールSciPy statsmodelsを用いた統計分析 scikit-learn を用いた機械学習

    • 学び
    • 2021/04/10 21:07
    • アナリティクス(データサイエンス)練習問題集 | analytics

      7 users

      mikiokubo.github.io

      はじめに 作者のページ My HP 世の中には例題を読ませるだけの教育が氾濫しているが、本当にできるようになるためには、練習が欠かせない。ここでは、Pythonを用いたデータアナリティクスを本当に自分でできるようになるための、練習問題を集めた。 できれば解答をコピペするのではなく、自分の力で考え、自分で試行錯誤をし、自分で書いてみることを勧める。 Python基礎 (1) Python基礎 (2) Python基礎 (3) Jupyter入門 Jupyerでのデバッグのやり方 数値計算モジュール NumPy データ解析モジュール Pandas 可視化モジュールmatplotlib 可視化モジュール plotly データを可視化するための方法 (Plotly Express) 科学技術計算モジュールSciPy statsmodelsを用いた統計分析 scikit-learn を用いた機械学習

      • 学び
      • 2021/03/30 22:22
      • python
      • 学習
      • Python言語による実務で使える100+の最適化問題 | opt100

        9 users

        mikiokubo.github.io

        指針 厳密解法に対しては、解ける問題例の規模の指針を与える。数理最適化ソルバーを使う場合には、Gurobi かmypulpを用い、それぞれの限界を調べる。動的最適化の場合には、メモリの限界について調べる。 近似解法に対しては、近似誤差の指針を与える。 複数の定式化を示し、どの定式化が実務的に良いかの指針を示す。 出来るだけベンチマーク問題例を用いる。OR-Libraryなどから問題例をダウンロードし、ディレクトリごとに保管しておく。 解説ビデオもYoutubeで公開する. 主要な問題に対してはアプリを作ってデモをする. 以下,デモビデオ: 注意 基本的には,コードも公開するが, github自体はプライベート そのうち本にするかもしれない(予約はしているが, 保証はない). プロジェクトに参加したい人は,以下の技量が必要(github, nbdev, poetry, gurobi); ペー

        • テクノロジー
        • 2021/03/30 13:18
        • あとで読む
        • Python言語による実務で使える100+の最適化問題 | opt100

          1426 users

          mikiokubo.github.io

          指針 厳密解法に対しては、解ける問題例の規模の指針を与える。数理最適化ソルバーを使う場合には、Gurobi かmypulpを用い、それぞれの限界を調べる。動的最適化の場合には、メモリの限界について調べる。 近似解法に対しては、近似誤差の指針を与える。 複数の定式化を示し、どの定式化が実務的に良いかの指針を示す。 出来るだけベンチマーク問題例を用いる。OR-Libraryなどから問題例をダウンロードし、ディレクトリごとに保管しておく。 解説ビデオもYoutubeで公開する. 主要な問題に対してはアプリを作ってデモをする. 以下,デモビデオ: 注意 基本的には,コードも公開するが, github自体はプライベート そのうち本にするかもしれない(予約はしているが, 保証はない). プロジェクトに参加したい人は,以下の技量が必要(github, nbdev, poetry, gurobi); ペー

          • テクノロジー
          • 2021/03/30 12:49
          • python
          • アルゴリズム
          • あとで読む
          • プログラミング
          • algorithm
          • 最適化
          • 数理最適化
          • programming
          • 統計
          • 言語
          • Python言語による実務で使える100+の最適化問題 | opt100

            15 users

            mikiokubo.github.io

            指針 厳密解法に対しては、解ける問題例の規模の指針を与える。数理最適化ソルバーを使う場合には、Gurobi かmypulpを用い、それぞれの限界を調べる。動的最適化の場合には、メモリの限界について調べる。 近似解法に対しては、近似誤差の指針を与える。 複数の定式化を示し、どの定式化が実務的に良いかの指針を示す。 出来るだけベンチマーク問題例を用いる。OR-Libraryなどから問題例をダウンロードし、ディレクトリごとに保管しておく。 解説ビデオもYoutubeで公開する. 主要な問題に対してはアプリを作ってデモをする. 以下,デモビデオ: 注意 基本的には,コードも公開するが, github自体はプライベート そのうち本にするかもしれない(予約はしているが, 保証はない). プロジェクトに参加したい人は,以下の技量が必要(github, nbdev, poetry, gurobi); ペー

            • テクノロジー
            • 2021/01/03 00:21
            • 最適化
            • python
            • あとで読む

            このページはまだ
            ブックマークされていません

            このページを最初にブックマークしてみませんか?

            『mikiokubo.github.io』の新着エントリーを見る

            キーボードショートカット一覧

            j次のブックマーク

            k前のブックマーク

            lあとで読む

            eコメント一覧を開く

            oページを開く

            はてなブックマーク

            • 総合
            • 一般
            • 世の中
            • 政治と経済
            • 暮らし
            • 学び
            • テクノロジー
            • エンタメ
            • アニメとゲーム
            • おもしろ
            • アプリ・拡張機能
            • 開発ブログ
            • ヘルプ
            • お問い合わせ
            • ガイドライン
            • 利用規約
            • プライバシーポリシー
            • 利用者情報の外部送信について
            • ガイドライン
            • 利用規約
            • プライバシーポリシー
            • 利用者情報の外部送信について

            公式Twitter

            • 公式アカウント
            • ホットエントリー

            はてなのサービス

            • はてなブログ
            • はてなブログPro
            • 人力検索はてな
            • はてなブログ タグ
            • はてなニュース
            • ソレドコ
            • App Storeからダウンロード
            • Google Playで手に入れよう
            Copyright © 2005-2025 Hatena. All Rights Reserved.
            設定を変更しましたx