サクサク読めて、アプリ限定の機能も多数!
トップへ戻る
デスク環境を整える
developer.nvidia.com
Reading Time: 7 minutes ChatGPT が登場して以降、多くの企業/組織にて生成 AI の活用が進んでいます。その中でも LLM (Large Language Model、大規模言語モデル) は大量の知識を学習することで幅広い分野の問題を解決することができます。LLM は学習した知識には適切な回答ができるも一方で、社内ナレッジなど学習には含まれていない事がらに関する回答は得意ではありません。LLM が特定の領域の質問にも正確に回答できるようにした手法に RAG (Retrieval Augmented Generations) があります。 RAG は、大きく「レトリーバー (Retriever)」と「ジェネレーター (Generator)」の 2 つのパーツで構成されています。レトリーバーは、ユーザーによって入力されたクエリ (例: 質問文) を受け取り、そのク
Automating GPU Kernel Generation with DeepSeek-R1 and Inference Time Scaling As AI models extend their capabilities to solve more sophisticated challenges, a new scaling law known as test-time scaling or inference-time scaling is emerging. Also known as AI reasoning or long-thinking, this technique improves model performance by allocating additional computational resources during inference to eval
Reading Time: 4 minutes Mixture of Experts (MoE) 大規模言語モデル (LLM) アーキテクチャは、GPT-4 などの商用の LLM と Mistral Mixtral 8x7B のオープン ソース リリースによりコミュニティ モデルの両方で最近登場しました。Mixtral モデルの強力な相対的性能は、MoE を LLM アーキテクチャでどのように使用できるのか、多くの関心と疑問を引き起こしました。では、MoE とは何であり、なぜそれが重要なのでしょうか? Mixture of Experts は、レイヤーまたは演算 (線形レイヤー、MLP、注意投影など) の計算を複数の「エキスパート」サブネットワークに分割するニューラル ネットワークのアーキテクチャ パターンです。こうしたサブネットワークはそれぞれの計算を独立して実行し、その結果を組み合わせ
NVIDIA Transitions Fully Towards Open-Source GPU Kernel Modules With the R515 driver, NVIDIA released a set of Linux GPU kernel modules in May 2022 as open source with dual GPL and MIT licensing. The initial release targeted datacenter compute GPUs, with GeForce and Workstation GPUs in an alpha state. At the time, we announced that more robust and fully-featured GeForce and Workstation Linux suppo
Cortex cobots のような複雑なロボットのプログラミング動作は、常に課題でした。Cortex は、このプログラミングタスクを大幅に簡素化する Isaac Simの意思決定フレームワークです。シミュレーションで世界の表現を構築することにより、ロボットはその環境を認識し、完了するように設計されたタスクについて決定を下すことができます。 Isaac Cortex の詳細 > Gym 強化学習(RL) は、複雑なタスクを実行するためのロボット工学における強力な機械学習方法です。ロボットは、タスクを完了してスキルを習得するために”Gym”でトレーニングすることができます。Isaac Gymは、ロボットのトレーニング時間を大幅に短縮するGPU アクセラレーション RL ツールです。 Omniverse Isaac Gym の詳細 >
Reading Time: 3 minutes 検索拡張生成 (RAG) アプリケーションで、テキストだけでなく、表、グラフ、チャート、図など、さまざまな種類のデータを処理できれば、その有用性が飛躍的に高まります。そのためには、テキストや画像などの形式の情報を一貫して理解し、応答を生成することができるフレームワークが必要です。 この記事では、マルチモダリティ (複数の種類のデータ) を扱う上での課題と、マルチモーダル RAG パイプラインを構築するためのアプローチについて説明します。説明を簡潔にするために、画像とテキストの 2 つのモダリティのみに焦点を当てます。 マルチモダリティはなぜ難しいのでしょうか? 企業が扱う非構造化データは、フォルダーをいっぱいにしている高解像度の画像や、テキストが含まれる表、グラフ、図などが混在した PDF のように、複数のモダリティにまたがって散らばっている
Reading Time: 3 minutes ご注意: この記事は NeMo Framework のアップデートのため、2024 年 6 月 10 日に大幅に変更を加えました。 本記事では、NeMo Framework を使用して、日本語の大規模言語モデル (LLM) の PEFT (ファインチューニングの手法の一種)を実行する方法を説明します。 NeMo Framework とは NeMo Framework は、LLM をはじめ、生成 AI モデルを構築、カスタマイズするためのクラウドネイティブなフレームワークです。NGC 上にコンテナーが公開されており、すぐに利用を開始することができます。 NeMo Framework は、NVIDIA AI Enterprise の対象ソフトウェアになっているため、エンタープライズ サポートを希望される場合は、NVIDIA AI Enterpri
Debugging is difficult. Debugging across multiple languages is especially challenging, and debugging across devices often requires a team with varying skill sets and expertise to reveal the underlying problem. Yet projects often require using multiple languages, to ensure high performance where necessary, a user-friendly experience, and compatibility where possible. Unfortunately, there is no sing
NVIDIA Brev NVIDIA Brev provides streamlined access to NVIDIA GPU instances on popular cloud platforms, automatic environment setup, and flexible deployment options, enabling developers to start experimenting instantly. Launchables are a feature of NVIDIA Brev that deliver preconfigured, fully optimized compute and software environments. Fast and easy to deploy, launchables allow you to start proj
NVIDIA DLI 教育キット プログラム 「NVIDIA Deep Learning Institute (DLI) 教育キット プログラム」では、GPU をカリキュラムに取り入れようとしている大学教員を支援するため、ダウンロード可能な教材とオンライン コースへのアクセスを提供しています。一流の大学の研究者と共同開発した教育キットは、使いやすさと完全なカリキュラム デザインを兼ね備えています。教員は学術理論を現実世界に応用して、次世代の技術者に極めて重要な演算処理スキル セットを習得させることができます。 今すぐ登録 教育キット NVIDIA DLI 教育キットには、ダウンロード可能な指導用教材とオンライン コースが含まれています。これらを使用すれば、アクセラレーテッド コンピューティング、データ サイエンス、ディープ ラーニング、グラフィックス、ロボティクスといった分野の専門知識を実
Reading Time: 3 minutes GPU アプリケーションを高速化する方法には、主にコンパイラ指示行、プログラミング言語、ライブラリの 3 つがあります。OpenACC などは指示行ベースのプログラミング モデルで、コードをスムーズに GPU に移植し、高速化することができます。使い方は簡単ですが、特定のシナリオでは最適なパフォーマンスが得られない場合があります。 CUDA C や C++ などのプログラミング言語は、アプリケーションを高速化する際に、より大きな柔軟性を与えてくれます。しかし、最新のハードウェアで最適なパフォーマンスを実現するために、新しいハードウェア機能を活用したコードを書くことも、ユーザーの責任です。そこで、そのギャップを埋めるのが、ライブラリです。 コードの再利用性を高めるだけでなく、NVIDIA 数学ライブラリは、最大の性能向上のために GPU ハード
NVIDIA GH200 Superchip が、Llama モデルとのマルチターン インタラクションの推論を 2 倍高速化
NVIDIA is now publishing Linux GPU kernel modules as open source with dual GPL/MIT license, starting with the R515 driver release. You can find the source code for these kernel modules in the NVIDIA/open-gpu-kernel-modules GitHub page This release is a significant step toward improving the experience of using NVIDIA GPUs in Linux, for tighter integration with the OS, and for developers to debug, i
PyTorch と NVIDIA TensorRT を新たに統合し、1 行のコードで推論を高速化する Torch-TensorRT に期待しています。PyTorch は、今では代表的なディープラーニング フレームワークであり、世界中に数百万人のユーザーを抱えています。TensorRT はデータ センター、組み込み、および車載機器で稼働する GPU アクセラレーションプラットフォーム全体で、高性能なディープラーニングの推論を行うための SDK です。この統合により、PyTorch ユーザーは TensorRT を使用する際、簡素化されたワークフローを通じて非常に高い推論性能を得ることができます。 Torch-TensorRT とは Torch-TensorRT は、TensorRT の推論最適化を NVIDIA GPU で利用するための PyTorch の統合ソフトウェアです。たった 1 行
WSL2 is available on Windows 11 outside the Windows Insider Preview. For more information about what is supported, see the CUDA on WSL User Guide. In June 2020, we released the first NVIDIA Display Driver that enabled GPU acceleration in the Windows Subsystem for Linux (WSL) 2 for Windows Insider Program (WIP) Preview users. At that time, it was still an early preview with a limited set of feature
Ray Tracing Gems II is now available to download for free via Apress. This Open Access book is a must-have for anyone interested in real-time rendering. Ray tracing is the holy grail of gaming graphics, simulating the physical behavior of light to bring real-time, cinematic-quality rendering to even the most visually intense games. Ray tracing is also a fundamental algorithm used for architecture
NVIDIA Riva for DevelopersNVIDIA® Riva is a set of GPU-accelerated multilingual speech and translation microservices for building fully customizable, real-time conversational AI pipelines. Riva includes automatic speech recognition (ASR), text-to-speech (TTS), and neural machine translation (NMT) and is deployable in all clouds, in data centers, at the edge, or in embedded devices. With Riva, orga
NVIDIA Nsight™ Systems is a system-wide performance analysis tool designed to visualize an application’s algorithms, identify the largest opportunities to optimize, and tune to scale efficiently across any quantity or size of CPUs and GPUs, from large servers to our smallest systems-on-a-chip (SoCs).
Historically, accelerating your C++ code with GPUs has not been possible in Standard C++ without using language extensions or additional libraries: CUDA C++ requires the use of __host__ and __device__ attributes on functions and the triple-chevron syntax for GPU kernel launches. OpenACC uses #pragmas to control GPU acceleration. Thrust lets you express parallelism portably but uses language extens
WSL2 is available on Windows 11 outside the Windows Insider Preview. For more information about what is supported, see the CUDA on WSL User Guide. In response to popular demand, Microsoft announced a new feature of the Windows Subsystem for Linux 2 (WSL 2)—GPU acceleration—at the Build conference in May 2020. This feature opens the gate for many compute applications, professional tools, and worklo
WSL2 is available on Windows 11 outside of Windows Insider Preview. Please read the CUDA on WSL user guide for details on what is supported Microsoft Windows is a ubiquitous platform for enterprise, business, and personal computing systems. However, industry AI tools, models, frameworks, and libraries are predominantly available on Linux OS. Now all users of AI - whether they are experienced profe
Today, during the 2020 NVIDIA GTC keynote address, NVIDIA founder and CEO Jensen Huang introduced the new NVIDIA A100 GPU based on the new NVIDIA Ampere GPU architecture. This post gives you a look inside the new A100 GPU, and describes important new features of NVIDIA Ampere architecture GPUs. The diversity of compute-intensive applications running in modern cloud data centers has driven the expl
The new NVIDIA A100 GPU based on the NVIDIA Ampere GPU architecture delivers the greatest generational leap in accelerated computing. The A100 GPU has revolutionary hardware capabilities and we’re excited to announce CUDA 11 in conjunction with A100. CUDA 11 enables you to leverage the new hardware capabilities to accelerate HPC, genomics, 5G, rendering, deep learning, data analytics, data science
Connect with millions of like-minded developers, researchers, and innovators.
Jetson Community ProjectsExplore and learn from Jetson projects created by us and our community. These have been created with Jetson developer kits. Scroll down to see projects with code, videos and more.
NVIDIA Makes 3D Deep Learning Research Easy with Kaolin PyTorch Library Research efforts in 3D computer vision and AI have been rising side-by-side like two skyscrapers. But the trip between these formidable towers has involved clambering up and down dozens of stairwells. To bridge that divide, NVIDIA recently released Kaolin, which in a few steps moves 3D models into the realm of neural networks.
GPUDirect Storage: A Direct Path Between Storage and GPU Memory As AI and HPC datasets continue to increase in size, the time spent loading data for a given application begins to place a strain on the total application’s performance. When considering end-to-end application performance, fast GPUs are increasingly starved by slow I/O. I/O, the process of loading data from storage to GPUs for process
All NVIDIA GPUs starting with the Kepler generation support fully-accelerated hardware video encoding, and all GPUs starting with Fermi generation support fully-accelerated hardware video decoding. As of July 2019 Kepler, Maxwell, Pascal, Volta and Turing generation GPUs support hardware encoding, and Fermi, Kepler, Maxwell, Pascal, Volta and Turing generation GPUs support hardware decoding. The
Get Started With Jetson Nano Developer Kit Click here for the guide based on Jetson Nano 2GB Developer Kit. Introduction The NVIDIA® Jetson Nano™ Developer Kit is a small AI computer for makers, learners, and developers. After following along with this brief guide, you’ll be ready to start building practical AI applications, cool AI robots, and more. microSD card slot for main storage 40-pin expan
次のページ
このページを最初にブックマークしてみませんか?
『NVIDIA Developer』の新着エントリーを見る
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く