はてなブックマークアプリ

サクサク読めて、
アプリ限定の機能も多数!

アプリで開く

はてなブックマーク

  • はてなブックマークって?
  • アプリ・拡張の紹介
  • ユーザー登録
  • ログイン
  • Hatena

はてなブックマーク

トップへ戻る

  • 総合
    • 人気
    • 新着
    • IT
    • 最新ガジェット
    • 自然科学
    • 経済・金融
    • おもしろ
    • マンガ
    • ゲーム
    • はてなブログ(総合)
  • 一般
    • 人気
    • 新着
    • 社会ニュース
    • 地域
    • 国際
    • 天気
    • グルメ
    • 映画・音楽
    • スポーツ
    • はてな匿名ダイアリー
    • はてなブログ(一般)
  • 世の中
    • 人気
    • 新着
    • 新型コロナウイルス
    • 働き方
    • 生き方
    • 地域
    • 医療・ヘルス
    • 教育
    • はてな匿名ダイアリー
    • はてなブログ(世の中)
  • 政治と経済
    • 人気
    • 新着
    • 政治
    • 経済・金融
    • 企業
    • 仕事・就職
    • マーケット
    • 国際
    • はてなブログ(政治と経済)
  • 暮らし
    • 人気
    • 新着
    • カルチャー・ライフスタイル
    • ファッション
    • 運動・エクササイズ
    • 結婚・子育て
    • 住まい
    • グルメ
    • 相続
    • はてなブログ(暮らし)
    • 掃除・整理整頓
    • 雑貨
    • 買ってよかったもの
    • 旅行
    • アウトドア
    • 趣味
  • 学び
    • 人気
    • 新着
    • 人文科学
    • 社会科学
    • 自然科学
    • 語学
    • ビジネス・経営学
    • デザイン
    • 法律
    • 本・書評
    • 将棋・囲碁
    • はてなブログ(学び)
  • テクノロジー
    • 人気
    • 新着
    • IT
    • セキュリティ技術
    • はてなブログ(テクノロジー)
    • AI・機械学習
    • プログラミング
    • エンジニア
  • おもしろ
    • 人気
    • 新着
    • まとめ
    • ネタ
    • おもしろ
    • これはすごい
    • かわいい
    • 雑学
    • 癒やし
    • はてなブログ(おもしろ)
  • エンタメ
    • 人気
    • 新着
    • スポーツ
    • 映画
    • 音楽
    • アイドル
    • 芸能
    • お笑い
    • サッカー
    • 話題の動画
    • はてなブログ(エンタメ)
  • アニメとゲーム
    • 人気
    • 新着
    • マンガ
    • Webマンガ
    • ゲーム
    • 任天堂
    • PlayStation
    • アニメ
    • バーチャルYouTuber
    • オタクカルチャー
    • はてなブログ(アニメとゲーム)
    • はてなブログ(ゲーム)
  • おすすめ

    新内閣発足

『NumPy』

  • 人気
  • 新着
  • すべて
  • NumPy 2.0 migration guide — NumPy v2.4.dev0 Manual

    4 users

    numpy.org

    Getting started What is NumPy? Installation NumPy quickstart NumPy: the absolute basics for beginners Fundamentals and usage NumPy fundamentals NumPy for MATLAB users NumPy tutorials NumPy how-tos Advanced usage and interoperability Using NumPy C-API F2PY user guide and reference manual Under-the-hood documentation for developers Interoperability with NumPy Extras Glossary Release notes NumPy 2.0

    • テクノロジー
    • 2024/03/16 06:48
    • Python
    • NumPy 2.0.0 Release Notes — NumPy v2.4.dev0 Manual

      6 users

      numpy.org

      Getting started What is NumPy? Installation NumPy quickstart NumPy: the absolute basics for beginners Fundamentals and usage NumPy fundamentals NumPy for MATLAB users NumPy tutorials NumPy how-tos Advanced usage and interoperability Using NumPy C-API F2PY user guide and reference manual Under-the-hood documentation for developers Interoperability with NumPy Extras Glossary Release notes 2.4.0 2.3.

      • テクノロジー
      • 2023/09/14 17:12
      • Python
      • NumPy

        3 users

        numpy.org

        """ To try the examples in the browser: 1. Type code in the input cell and press Shift + Enter to execute 2. Or copy paste the code, and click on the "Run" button in the toolbar """ # The standard way to import NumPy: import numpy as np # Create a 2-D array, set every second element in # some rows and find max per row: x = np.arange(15, dtype=np.int64).reshape(3, 5) x[1:, ::2] = -99 x # array([[ 0

        • テクノロジー
        • 2023/08/05 09:40
        • OS
        • ソフトウェア
        • Python
        • PC
        • numpy.searchsorted — NumPy v2.3 Manual

          3 users

          numpy.org

          Parameters: a1-D array_likeInput array. If sorter is None, then it must be sorted in ascending order, otherwise sorter must be an array of indices that sort it. varray_likeValues to insert into a. side{‘left’, ‘right’}, optionalIf ‘left’, the index of the first suitable location found is given. If ‘right’, return the last such index. If there is no suitable index, return either 0 or N (where N is

          • テクノロジー
          • 2018/06/02 22:08
          • NumPy documentation — NumPy v2.3 Manual

            3 users

            numpy.org

            Version: 2.3 Download documentation: Historical versions of documentation Useful links: Installation | Source Repository | Issue Tracker | Q&A Support | Mailing List NumPy is the fundamental package for scientific computing in Python. It is a Python library that provides a multidimensional array object, various derived objects (such as masked arrays and matrices), and an assortment of routines for

            • テクノロジー
            • 2017/07/09 08:53
            • numpy.insert — NumPy v2.3 Manual

              3 users

              numpy.org

              numpy.insert# numpy.insert(arr, obj, values, axis=None)[source]# Insert values along the given axis before the given indices. Parameters: arrarray_likeInput array. objslice, int, array-like of ints or boolsObject that defines the index or indices before which values is inserted. Changed in version 2.1.2: Boolean indices are now treated as a mask of elements to insert, rather than being cast to the

              • テクノロジー
              • 2017/02/01 05:29
              • numpy.argmax — NumPy v2.3 Manual

                3 users

                numpy.org

                numpy.argmax# numpy.argmax(a, axis=None, out=None, *, keepdims=<no value>)[source]# Returns the indices of the maximum values along an axis. Parameters: aarray_likeInput array. axisint, optionalBy default, the index is into the flattened array, otherwise along the specified axis. outarray, optionalIf provided, the result will be inserted into this array. It should be of the appropriate shape and d

                • テクノロジー
                • 2017/01/31 18:30
                • numpy.linalg.norm — NumPy v2.3 Manual

                  3 users

                  numpy.org

                  numpy.linalg.norm# linalg.norm(x, ord=None, axis=None, keepdims=False)[source]# Matrix or vector norm. This function is able to return one of eight different matrix norms, or one of an infinite number of vector norms (described below), depending on the value of the ord parameter. Parameters: xarray_likeInput array. If axis is None, x must be 1-D or 2-D, unless ord is None. If both axis and ord are

                  • テクノロジー
                  • 2016/08/06 11:10
                  • numpy.genfromtxt — NumPy v2.3 Manual

                    4 users

                    numpy.org

                    numpy.genfromtxt# numpy.genfromtxt(fname, dtype=<class 'float'>, comments='#', delimiter=None, skip_header=0, skip_footer=0, converters=None, missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=" !#$%&'()*+, -./:;<=>?@[\\]^{|}~", replace_space='_', autostrip=False, case_sensitive=True, defaultfmt='f%i', unpack=None, usemask=False, loose=True, invalid_r

                    • テクノロジー
                    • 2016/06/04 18:29
                    • Data types — NumPy v2.3 Manual

                      4 users

                      numpy.org

                      Getting started What is NumPy? Installation NumPy quickstart NumPy: the absolute basics for beginners Fundamentals and usage NumPy fundamentals Array creation Indexing on ndarrays I/O with NumPy Data types Broadcasting Copies and views Working with Arrays of Strings And Bytes Structured arrays Universal functions (ufunc) basics NumPy for MATLAB users NumPy tutorials NumPy how-tos Advanced usage an

                      • テクノロジー
                      • 2015/10/27 14:46
                      • Python
                      • Indexing routines — NumPy v1.26 Manual

                        3 users

                        numpy.org

                        Translates slice objects to concatenation along the second axis.

                        • テクノロジー
                        • 2015/09/22 19:22
                        • numpy.nan_to_num — NumPy v2.3 Manual

                          3 users

                          numpy.org

                          numpy.nan_to_num# numpy.nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None)[source]# Replace NaN with zero and infinity with large finite numbers (default behaviour) or with the numbers defined by the user using the nan, posinf and/or neginf keywords. If x is inexact, NaN is replaced by zero or by the user defined value in nan keyword, infinity is replaced by the largest finite floating po

                          • テクノロジー
                          • 2015/06/26 04:59
                          • numpy.polyfit — NumPy v2.3 Manual

                            6 users

                            numpy.org

                            numpy.polyfit# numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)[source]# Least squares polynomial fit. Note This forms part of the old polynomial API. Since version 1.4, the new polynomial API defined in numpy.polynomial is preferred. A summary of the differences can be found in the transition guide. Fit a polynomial p(x) = p[0] * x**deg + ... + p[deg] of degree deg to points (x

                            • テクノロジー
                            • 2015/02/26 20:18
                            • numpy.lexsort — NumPy v2.3 Manual

                              3 users

                              numpy.org

                              numpy.lexsort# numpy.lexsort(keys, axis=-1)# Perform an indirect stable sort using a sequence of keys. Given multiple sorting keys, lexsort returns an array of integer indices that describes the sort order by multiple keys. The last key in the sequence is used for the primary sort order, ties are broken by the second-to-last key, and so on. Parameters: keys(k, m, n, …) array-likeThe k keys to be s

                              • テクノロジー
                              • 2015/02/07 19:37
                              • Overview — NumPy v1.8 Manual

                                5 users

                                numpy.org

                                Version: 2.3 Download documentation: Historical versions of documentation Useful links: Installation | Source Repository | Issue Tracker | Q&A Support | Mailing List NumPy is the fundamental package for scientific computing in Python. It is a Python library that provides a multidimensional array object, various derived objects (such as masked arrays and matrices), and an assortment of routines for

                                • テクノロジー
                                • 2014/04/23 01:47
                                • numpy
                                • python
                                • あとで読む
                                • numpy.ndarray — NumPy v2.3 Manual

                                  4 users

                                  numpy.org

                                  numpy.ndarray# class numpy.ndarray(shape, dtype=float, buffer=None, offset=0, strides=None, order=None)[source]# An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory, whether it is an integer, a floating point number, or something e

                                  • テクノロジー
                                  • 2013/07/03 08:03
                                  • python
                                  • Linear algebra — NumPy v2.3 Manual

                                    4 users

                                    numpy.org

                                    Linear algebra# The NumPy linear algebra functions rely on BLAS and LAPACK to provide efficient low level implementations of standard linear algebra algorithms. Those libraries may be provided by NumPy itself using C versions of a subset of their reference implementations but, when possible, highly optimized libraries that take advantage of specialized processor functionality are preferred. Exampl

                                    • テクノロジー
                                    • 2013/06/04 18:21
                                    • python
                                    • numpy.pad — NumPy v2.3 Manual

                                      3 users

                                      numpy.org

                                      numpy.pad# numpy.pad(array, pad_width, mode='constant', **kwargs)[source]# Pad an array. Parameters: arrayarray_like of rank NThe array to pad. pad_width{sequence, array_like, int}Number of values padded to the edges of each axis. ((before_1, after_1), ... (before_N, after_N)) unique pad widths for each axis. (before, after) or ((before, after),) yields same before and after pad for each axis. (pa

                                      • テクノロジー
                                      • 2013/05/17 16:36
                                      • python
                                      • Structured arrays — NumPy v2.3 Manual

                                        4 users

                                        numpy.org

                                        Getting started What is NumPy? Installation NumPy quickstart NumPy: the absolute basics for beginners Fundamentals and usage NumPy fundamentals Array creation Indexing on ndarrays I/O with NumPy Data types Broadcasting Copies and views Working with Arrays of Strings And Bytes Structured arrays Universal functions (ufunc) basics NumPy for MATLAB users NumPy tutorials NumPy how-tos Advanced usage an

                                        • テクノロジー
                                        • 2013/05/14 01:04
                                        • Python
                                        • numpy.matrix — NumPy v2.3 Manual

                                          3 users

                                          numpy.org

                                          numpy.matrix# class numpy.matrix(data, dtype=None, copy=True)[source]# Returns a matrix from an array-like object, or from a string of data. A matrix is a specialized 2-D array that retains its 2-D nature through operations. It has certain special operators, such as * (matrix multiplication) and ** (matrix power). Note It is no longer recommended to use this class, even for linear algebra. Instead

                                          • テクノロジー
                                          • 2012/09/23 09:55
                                          • NumPy reference — NumPy v2.3 Manual

                                            6 users

                                            numpy.org

                                            NumPy reference# Release: 2.3 Date: June 09, 2025 This reference manual details functions, modules, and objects included in NumPy, describing what they are and what they do. For learning how to use NumPy, see the complete documentation. Python API#

                                            • テクノロジー
                                            • 2012/05/31 16:27
                                            • エンジニア
                                            • ブックマーク バー
                                            • プログラミング
                                            • numpy.where — NumPy v2.3 Manual

                                              3 users

                                              numpy.org

                                              numpy.where# numpy.where(condition, [x, y, ]/)# Return elements chosen from x or y depending on condition. Note When only condition is provided, this function is a shorthand for np.asarray(condition).nonzero(). Using nonzero directly should be preferred, as it behaves correctly for subclasses. The rest of this documentation covers only the case where all three arguments are provided. Parameters: c

                                              • テクノロジー
                                              • 2012/02/17 10:56
                                              • Python
                                              • numpy.roll — NumPy v2.3 Manual

                                                4 users

                                                numpy.org

                                                numpy.roll# numpy.roll(a, shift, axis=None)[source]# Roll array elements along a given axis. Elements that roll beyond the last position are re-introduced at the first. Parameters: aarray_likeInput array. shiftint or tuple of intsThe number of places by which elements are shifted. If a tuple, then axis must be a tuple of the same size, and each of the given axes is shifted by the corresponding num

                                                • テクノロジー
                                                • 2012/02/08 12:09
                                                • Python
                                                • The N-dimensional array (ndarray) — NumPy v2.3 Manual

                                                  4 users

                                                  numpy.org

                                                  The N-dimensional array (ndarray)# An ndarray is a (usually fixed-size) multidimensional container of items of the same type and size. The number of dimensions and items in an array is defined by its shape, which is a tuple of N non-negative integers that specify the sizes of each dimension. The type of items in the array is specified by a separate data-type object (dtype), one of which is associa

                                                  • テクノロジー
                                                  • 2011/09/09 17:40
                                                  • python
                                                  • numpy.ravel — NumPy v2.3 Manual

                                                    3 users

                                                    numpy.org

                                                    numpy.ravel# numpy.ravel(a, order='C')[source]# Return a contiguous flattened array. A 1-D array, containing the elements of the input, is returned. A copy is made only if needed. As of NumPy 1.10, the returned array will have the same type as the input array. (for example, a masked array will be returned for a masked array input) Parameters: aarray_likeInput array. The elements in a are read in t

                                                    • テクノロジー
                                                    • 2011/08/20 21:43
                                                    • numpy.corrcoef — NumPy v2.3 Manual

                                                      4 users

                                                      numpy.org

                                                      numpy.corrcoef# numpy.corrcoef(x, y=None, rowvar=True, bias=<no value>, ddof=<no value>, *, dtype=None)[source]# Return Pearson product-moment correlation coefficients. Please refer to the documentation for cov for more detail. The relationship between the correlation coefficient matrix, R, and the covariance matrix, C, is The values of R are between -1 and 1, inclusive. Parameters: xarray_likeA 1

                                                      • テクノロジー
                                                      • 2011/08/19 18:47
                                                      • NumPy reference — NumPy v2.3 Manual

                                                        17 users

                                                        numpy.org

                                                        NumPy reference# Release: 2.3 Date: June 09, 2025 This reference manual details functions, modules, and objects included in NumPy, describing what they are and what they do. For learning how to use NumPy, see the complete documentation. Python API#

                                                        • テクノロジー
                                                        • 2010/03/24 11:38
                                                        • numpy
                                                        • Python
                                                        • reference
                                                        • *reference
                                                        • guide
                                                        • math
                                                        • NumPy

                                                          40 users

                                                          numpy.org

                                                          Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the de-facto standards of array computing today. NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more.

                                                          • テクノロジー
                                                          • 2009/06/21 15:03
                                                          • python
                                                          • numpy
                                                          • 数値計算
                                                          • package
                                                          • library
                                                          • LAPACK
                                                          • maths
                                                          • Programming
                                                          • BSD
                                                          • プログラミング
                                                          • Routines and objects by topic — NumPy v2.3 Manual

                                                            23 users

                                                            numpy.org

                                                            Routines and objects by topic# In this chapter, routine docstrings are presented, grouped by functionality. Many docstrings contain example code, which demonstrates basic usage of the routine. A convenient way to execute examples is the %doctest_mode mode of IPython, which allows for pasting of multi-line examples and preserves indentation.

                                                            • テクノロジー
                                                            • 2008/03/30 15:30
                                                            • numpy
                                                            • python
                                                            • scipy
                                                            • math
                                                            • 数学
                                                            • tutorial
                                                            • Tech

                                                            このページはまだ
                                                            ブックマークされていません

                                                            このページを最初にブックマークしてみませんか?

                                                            『NumPy』の新着エントリーを見る

                                                            キーボードショートカット一覧

                                                            j次のブックマーク

                                                            k前のブックマーク

                                                            lあとで読む

                                                            eコメント一覧を開く

                                                            oページを開く

                                                            はてなブックマーク

                                                            • 総合
                                                            • 一般
                                                            • 世の中
                                                            • 政治と経済
                                                            • 暮らし
                                                            • 学び
                                                            • テクノロジー
                                                            • エンタメ
                                                            • アニメとゲーム
                                                            • おもしろ
                                                            • アプリ・拡張機能
                                                            • 開発ブログ
                                                            • ヘルプ
                                                            • お問い合わせ
                                                            • ガイドライン
                                                            • 利用規約
                                                            • プライバシーポリシー
                                                            • 利用者情報の外部送信について
                                                            • ガイドライン
                                                            • 利用規約
                                                            • プライバシーポリシー
                                                            • 利用者情報の外部送信について

                                                            公式Twitter

                                                            • 公式アカウント
                                                            • ホットエントリー

                                                            はてなのサービス

                                                            • はてなブログ
                                                            • はてなブログPro
                                                            • 人力検索はてな
                                                            • はてなブログ タグ
                                                            • はてなニュース
                                                            • ソレドコ
                                                            • App Storeからダウンロード
                                                            • Google Playで手に入れよう
                                                            Copyright © 2005-2025 Hatena. All Rights Reserved.
                                                            設定を変更しましたx