はてなブックマークアプリ

サクサク読めて、
アプリ限定の機能も多数!

アプリで開く

はてなブックマーク

  • はてなブックマークって?
  • アプリ・拡張の紹介
  • ユーザー登録
  • ログイン
  • Hatena

はてなブックマーク

トップへ戻る

  • 総合
    • 人気
    • 新着
    • IT
    • 最新ガジェット
    • 自然科学
    • 経済・金融
    • おもしろ
    • マンガ
    • ゲーム
    • はてなブログ(総合)
  • 一般
    • 人気
    • 新着
    • 社会ニュース
    • 地域
    • 国際
    • 天気
    • グルメ
    • 映画・音楽
    • スポーツ
    • はてな匿名ダイアリー
    • はてなブログ(一般)
  • 世の中
    • 人気
    • 新着
    • 新型コロナウイルス
    • 働き方
    • 生き方
    • 地域
    • 医療・ヘルス
    • 教育
    • はてな匿名ダイアリー
    • はてなブログ(世の中)
  • 政治と経済
    • 人気
    • 新着
    • 政治
    • 経済・金融
    • 企業
    • 仕事・就職
    • マーケット
    • 国際
    • はてなブログ(政治と経済)
  • 暮らし
    • 人気
    • 新着
    • カルチャー・ライフスタイル
    • ファッション
    • 運動・エクササイズ
    • 結婚・子育て
    • 住まい
    • グルメ
    • 相続
    • はてなブログ(暮らし)
    • 掃除・整理整頓
    • 雑貨
    • 買ってよかったもの
    • 旅行
    • アウトドア
    • 趣味
  • 学び
    • 人気
    • 新着
    • 人文科学
    • 社会科学
    • 自然科学
    • 語学
    • ビジネス・経営学
    • デザイン
    • 法律
    • 本・書評
    • 将棋・囲碁
    • はてなブログ(学び)
  • テクノロジー
    • 人気
    • 新着
    • IT
    • セキュリティ技術
    • はてなブログ(テクノロジー)
    • AI・機械学習
    • プログラミング
    • エンジニア
  • おもしろ
    • 人気
    • 新着
    • まとめ
    • ネタ
    • おもしろ
    • これはすごい
    • かわいい
    • 雑学
    • 癒やし
    • はてなブログ(おもしろ)
  • エンタメ
    • 人気
    • 新着
    • スポーツ
    • 映画
    • 音楽
    • アイドル
    • 芸能
    • お笑い
    • サッカー
    • 話題の動画
    • はてなブログ(エンタメ)
  • アニメとゲーム
    • 人気
    • 新着
    • マンガ
    • Webマンガ
    • ゲーム
    • 任天堂
    • PlayStation
    • アニメ
    • バーチャルYouTuber
    • オタクカルチャー
    • はてなブログ(アニメとゲーム)
    • はてなブログ(ゲーム)
  • おすすめ

    新内閣発足

『qiita.com』

  • 人気
  • 新着
  • すべて
  • これでわかった! 不偏分散の n-1 ! - Qiita

    3 users

    qiita.com/DeepMata

    統計を勉強していると、不偏分散(平方和を$n-1$で割ったもの)というものがよく登場します。不偏分散は、母平均がわからないときに、標本平均からの差をもとデータのばらつきを計算するものです。その際、標本の数である $n$ で平均化する(標本分散)よりも $n-1$ で平均化する(不偏分散)ほうが、母分散の性質を表すといわれています。 なぜ $n-1$ で割るのかについていろいろな説明の仕方がありましたのでまとめてみました。個人的には、標本の平均から算出した標本平均を使うため、偏差平方和が$(n-1)\sigma^2$になってしまうから、という理解で落ち着きました。すこし長くなってしまいましたが、興味のあるところだけでも見ていただけるとうれしいです。それぞれの詳細は巻末記載の本やURLを参照ください。 1. 母集団と標本のちがい 母集団:調査対象となる数値や属性などを共有する集合全体。 標本:

    • テクノロジー
    • 2024/04/29 14:31
    • Pocket
    • Fine-Tuning😞 vs. RAG🏆 (2024 Microsoft論文) - Qiita

      5 users

      qiita.com/DeepMata

      Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 業務でLLMを利用する場合に重要となっていくる事実を回答させるためのアプローチ。2024年1月のMicrosoftの『Fine-Tuning or Retrieval? Comparing Knowledge Injection in LLMs』という論文でFine-Tuning に RAGが勝利したことが示されています。RAGを選択する根拠として活用できそうです。 結論 Fine-Tuning vs. RAG:MMLUと時事問題の両タスクの結果では、RAGに大きなアドバンテージがあった。 [MMLU Results] (引用元:論文)

      • テクノロジー
      • 2024/04/18 02:40
      • LLMチューニング手法「LoRA」のポイントと活用例 - Qiita

        6 users

        qiita.com/DeepMata

        はじめに LoRAは、2022年に論文で紹介されている大規模言語モデルの効率的なファインチューニングを実現するための手法です。大規模言語モデル入門にも紹介されているのでLLMの基礎から学習するのであればこちらの本がお勧めです。 LoRAとそれ以外の代表的なチューニング手法との違いは以下のようになります。 LoRA(LOW-RANK ADAPTATION): 少数の学習パラメータでタスクに対して調整するという考え方。 RAG(Retrieval-Augmented Generation): 辞書的に外部の知識を与えてモデルに回答してもらうという考え方。 In-Context learning/Few-Shot Learningや、Promptエンジニアリング: モデルは十分な能力を備えているのでモデルからうまく回答を生成するという考え方。 LoRAの仕組み アプローチとしては、非常にシンプル

        • テクノロジー
        • 2023/12/26 21:15

        このページはまだ
        ブックマークされていません

        このページを最初にブックマークしてみませんか?

        『qiita.com』の新着エントリーを見る

        キーボードショートカット一覧

        j次のブックマーク

        k前のブックマーク

        lあとで読む

        eコメント一覧を開く

        oページを開く

        はてなブックマーク

        • 総合
        • 一般
        • 世の中
        • 政治と経済
        • 暮らし
        • 学び
        • テクノロジー
        • エンタメ
        • アニメとゲーム
        • おもしろ
        • アプリ・拡張機能
        • 開発ブログ
        • ヘルプ
        • お問い合わせ
        • ガイドライン
        • 利用規約
        • プライバシーポリシー
        • 利用者情報の外部送信について
        • ガイドライン
        • 利用規約
        • プライバシーポリシー
        • 利用者情報の外部送信について

        公式Twitter

        • 公式アカウント
        • ホットエントリー

        はてなのサービス

        • はてなブログ
        • はてなブログPro
        • 人力検索はてな
        • はてなブログ タグ
        • はてなニュース
        • ソレドコ
        • App Storeからダウンロード
        • Google Playで手に入れよう
        Copyright © 2005-2025 Hatena. All Rights Reserved.
        設定を変更しましたx