サクサク読めて、アプリ限定の機能も多数!
トップへ戻る
衆院選
www.ariseanalytics.com
Tweet RAG (Retrieval Augmented Generation) を活用!LLMで外部データを参照する方法を解説 はじめに はじめまして、DX Technology Unitの芹澤です。普段はAI関連技術を用いた研究開発に携わっています。 昨今、ChatGPTを初めとした大規模言語モデル (Large Language Model; 以下LLM) が話題になっており、様々な質問に対して非常に優れたアウトプットが得られるようになりました。一方、LLMを企業で使用する場合、社内特有のデータを参照する必要があるため、社内特化LLMシステムを構築することが必須となります。 弊社では、社内の業務効率化を目的とした生成AIの活用を促進する「生成AIプロジェクト」が立ち上がり、ChatGPTをはじめとしたLLMの検証作業を進めています。その中で生成AIが社内情報を参照できるようにする
初めまして。Social Innovation Divisionの木本と申します。 普段の業務では、ヘルスケアアプリで収集されるデータの分析を行っています。 本記事では生存時間分析について概要を説明した後、通信会社の顧客離脱に関するサンプルデータを用いたマーケティング分野での活用例を紹介します。 生存時間分析とは あるイベント(例えば疾病発症)が起きるまでの時間に焦点を当てる分析方法を生存時間分析といいます。 例えばAさんが何年後に「疾病を発症するか」知りたいとします。生存時間分析を行うと、Aさんについて、①生存関数と呼ばれる時点ごとの生存確率の予測値が取得できます。また、②生存確率に対する発症タイミングを予測することができます。 生存時間分析の流れ あるデータに対して生存時間分析を用いる場合、生存期間とイベント発生有無について整理する必要が出てきます。 ここでイベント発生無しと定義したデ
Tweet 【Go言語入門】goroutineとは? 実際に手を動かしながら goroutineの基礎を理解しよう! はじめまして。2022年4月に中途入社し、現在Analytics Delivery Divisionでバックエンド開発をしているエンジニアのナムです。ARISE analyticsに入社してから開発言語としてGoを使うことになりました。Goの特徴・メリットはいろいろありますが、今回はその中でもgoroutineについて簡単に話したいと思います。 goroutineとは goroutineは「Goでプログラムの同時性を簡単に具現し、既存の単純スレッド基盤に比べて効率的な動作を遂行するために作った作業単位」です。全てのGoプログラムは必ず1個以上のgoroutineを持ち、常にバックグラウンドで動作します。それぞれのgoroutineは独立的に実行されます。goroutineの
Tweet レコメンド#3 GPUで近似近傍探索を行うことで大規模データの計算時間を、12時間から50分へ約1/12に削減したお話 この記事はレコメンドエンジン連載の第3回目になります。前回までの記事はこちらを御覧ください。 レコメンド#1 ~レコメンドって何?~ レコメンド#2 Sparkで機械学習モデルを高速分散推論させる はじめまして、Marketing Solution Division所属の野尻と申します。19年度にARISEに新卒入社してから約1年間レコメンドエンジンの開発を担当しています。 今回は商品間の類似距離を計算する際に近似近傍探索×PySparkを用いることで、大量の商品に対しての計算時間を当初の12時間から50分まで、大幅に削減したお話をします。 背景と課題 最近傍探索について 近似近傍探索について 転置インデックスについて 直積量子化について Faissの利用法
Tweet 因果推論の先へ―機械学習で因果効果を予測する『反実仮想機械学習(Counterfactual Machine Learning)』入門 はじめに ARISE analytics の近藤です。本記事では、次世代の意思決定技術として注目されている反実仮想機械学習(Counterfactual Machine Learning:CFML)を紹介します。 本記事は、CFMLを日本語で体系的に整理し、初学者の理解を手助けすることをねらいとして執筆しました。本記事の理解促進につながるように、ベースとなった勉強会資料を記載します。こちらも併せて閲覧いただくことで理解の助けになれば幸いです。 目次 ・ はじめに ・ Counterfactual Machine Learning(CFML) ・ Off-Policy Evaluation(OPE) ・ CFMLを支える技術(オープンデータとツー
こんにちは。Customer Analytics Division所属データサイエンティスト兼データエンジニアの渡邉です。ARISE analyticsでは数百人のデータサイエンティストが活躍しています。一般的な分析環境は、データサイエンティストがそれぞれEMRを立て、その上のsparkで分析を走らせています。ただ、その分日々の分析費用も大きいものとなっています。そこで、sparkパラメータ最適化にトライしました。 spark最適パラメータ計算法 こちらのAWSの記事に従って計算しました。一部のパラメータについて、絵で説明したいと思います。 spark.executor.cores sparkはExecutorという単位があり、これが処理を実行する単位です。spark.executor.coresは各ExecutorがCPUのcoreをいくつ使用するか決めるパラメータです。絵で直感的にわか
INTELLIGENTCUSTOMER CARE INTELLIGENTFACTORY INTELLIGENTDRIVE INTELLIGENTRETAIL
このページを最初にブックマークしてみませんか?
『トップページ | 株式会社ARISE analytics(アライズ アナリティクス)』の新着エントリーを見る
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く