サクサク読めて、アプリ限定の機能も多数!
トップへ戻る
アメリカ大統領選
note.com/noppoman
不定期で更新しているnoteの数学シリーズですが、今回は僕の中で線形代数を学ぶ上で一番理解の難しかった行列式に関して、行列式はどういう特徴を表すものなのかという話をします。もう少し突っ込むと、ベクトル空間の上で計量を行うにはベクトルの内積を利用するのですが、この計量方法は行列式に関連しているものであるという話が本記事の主題です。一見なんの関わりもないように見える内積と行列式ですが、内積が導入された経緯を考え、行列式が表すものを紐解いていきましょう。 この記事はある程度線形代数(ベクトル空間、行列式)を理解しているが、行列式がどういった特徴を表すものなのか未だによく理解できていないという人に向けたものです。よって、ベクトル空間の詳しい話や行列式の存在証明、細かい性質に関する話は割愛して進んでいきます。 なお、この投稿では太字のアルファベット(e.g. x, y)をn-dimベクトルとして扱い
群の準同型定理は群を学び始めた人が大きくつまずく1つのポイントではないかと思います。教科書を見るとかなり抽象的な内容で書かれていてなんのことだかさっぱり。僕も当初全く意味がわかりませんでした。しかしどうも諦めがつかず、コツコツ考え続けていたら、そもそも商群のことを完全に理解できていないことが準同型定理の理解を妨げていることに気づき、商群ひいては正規部分群がいかなるものなのかをきちんと理解することで、ついに準同型定理を証明することができました。 この投稿では自分の備忘録も兼ねて、準同型定理を理解するまでに必要な道程を順々にゆっくり書いていければなと思います。 この投稿の方針この投稿は商群や正規部分群、自然な写像の理解がイマイチで、準同型定理の理解に苦しんでいるという方に向けた記事です。なので、そもそもそれらは分かっているけど、他の理由で群の準同型定理がわからないという人にはミスマッチな内容と
このページを最初にブックマークしてみませんか?
『noppoman|note』の新着エントリーを見る
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く