サクサク読めて、アプリ限定の機能も多数!
トップへ戻る
WWDC25
qiita.com/KariControl
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? はじめに 機械学習の世界ではベイズ最適化を活用した効率的なハイパーパラメータチューニングが当たり前のように使われております。例えば、2015年には東京大学の佐藤先生がベイズ最適化を上手くを活用した実践的な研究成果をご発表されております この発表で解説されている通り、ハイパーパラメータの選定作業すら機械に任せてしまうことができるため、これ以降もベイズ最適化が昨今の機械学習ブームのさらなる飛躍に貢献していきました。ベイズ最適化が機械学習のハイパーパラメータ選定に使われる理由は大まかに下記の点であるといわれています。 1.ブラックボックス関数
このページを最初にブックマークしてみませんか?
『qiita.com』の新着エントリーを見る
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く