はてなブックマークアプリ

サクサク読めて、
アプリ限定の機能も多数!

アプリで開く

はてなブックマーク

  • はてなブックマークって?
  • アプリ・拡張の紹介
  • ユーザー登録
  • ログイン
  • Hatena

はてなブックマーク

トップへ戻る

  • 総合
    • 人気
    • 新着
    • IT
    • 最新ガジェット
    • 自然科学
    • 経済・金融
    • おもしろ
    • マンガ
    • ゲーム
    • はてなブログ(総合)
  • 一般
    • 人気
    • 新着
    • 社会ニュース
    • 地域
    • 国際
    • 天気
    • グルメ
    • 映画・音楽
    • スポーツ
    • はてな匿名ダイアリー
    • はてなブログ(一般)
  • 世の中
    • 人気
    • 新着
    • 新型コロナウイルス
    • 働き方
    • 生き方
    • 地域
    • 医療・ヘルス
    • 教育
    • はてな匿名ダイアリー
    • はてなブログ(世の中)
  • 政治と経済
    • 人気
    • 新着
    • 政治
    • 経済・金融
    • 企業
    • 仕事・就職
    • マーケット
    • 国際
    • はてなブログ(政治と経済)
  • 暮らし
    • 人気
    • 新着
    • カルチャー・ライフスタイル
    • ファッション
    • 運動・エクササイズ
    • 結婚・子育て
    • 住まい
    • グルメ
    • 相続
    • はてなブログ(暮らし)
    • 掃除・整理整頓
    • 雑貨
    • 買ってよかったもの
    • 旅行
    • アウトドア
    • 趣味
  • 学び
    • 人気
    • 新着
    • 人文科学
    • 社会科学
    • 自然科学
    • 語学
    • ビジネス・経営学
    • デザイン
    • 法律
    • 本・書評
    • 将棋・囲碁
    • はてなブログ(学び)
  • テクノロジー
    • 人気
    • 新着
    • IT
    • セキュリティ技術
    • はてなブログ(テクノロジー)
    • AI・機械学習
    • プログラミング
    • エンジニア
  • おもしろ
    • 人気
    • 新着
    • まとめ
    • ネタ
    • おもしろ
    • これはすごい
    • かわいい
    • 雑学
    • 癒やし
    • はてなブログ(おもしろ)
  • エンタメ
    • 人気
    • 新着
    • スポーツ
    • 映画
    • 音楽
    • アイドル
    • 芸能
    • お笑い
    • サッカー
    • 話題の動画
    • はてなブログ(エンタメ)
  • アニメとゲーム
    • 人気
    • 新着
    • マンガ
    • Webマンガ
    • ゲーム
    • 任天堂
    • PlayStation
    • アニメ
    • バーチャルYouTuber
    • オタクカルチャー
    • はてなブログ(アニメとゲーム)
    • はてなブログ(ゲーム)
  • おすすめ

    参議院選挙2025

『qiita.com』

  • 人気
  • 新着
  • すべて
  • 本当に小さく機械学習プロダクトを始めるには - Qiita

    11 users

    qiita.com/tkazusa

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? TL;DR マイクロサービス基盤がない、潤沢にエンジニアリソースがない、そんな現場にも機械学習プロジェクトをいい感じにプロダクトに乗せていく今風のやり方について考えたい。そのために現状世の中にある機械学習ツールを俯瞰したい。 プロダクトに乗せるとすると、デプロイで終わりではなくて、モデル再学習やモニタリングなども含めて考えたい。 はじめに 機械学習のサービスは内部のアルゴリズムが複雑であっても、そのサービス自体に求められることが多くなかったり、学習と推論時で必要なリソースが異なったりというところからマイクロサービスアーキテクチャと相性が

    • テクノロジー
    • 2018/12/29 20:52
    • MLOps
    • qiita
    • 機械学習
    • Python
    • あとで読む
    • Spark MLlibの協調フィルタリングを活用したMovie Recommendation - Qiita

      4 users

      qiita.com/tkazusa

      Sparkを触る機会が増えてきてるので、知識の棚卸しを兼ねてMLlib使ってレコメンデーションシステムを実装してみました。SparkSamit2014などMLlibのチュートリアル的に色々使われているSparkのMovie Recommendationですが、edXのIntroduction to Big Data with Apache Sparが内容的にも良さそうだったので、題材にしながら実装しました。本講座はSpark 1.3.1での実装ですが少し古すぎるので、1.6.1で使える機能は使う形でコード変えてます。 おおまかな手順 ①データの準備 元データを訓練、評価、テストデータにそれぞれ分割 ②評価数500以上の映画の中から平均評価点が高いものを表示 ③協調フィルタリングの実装 ④訓練データに自分をuserID"0"として加え、好きな映画を評価 ⑤自分の評価をもとに、アルゴリズムに映

      • テクノロジー
      • 2017/04/30 21:02
      • Spark
      • PuLPを使った線形計画法(Linear Programming) - Qiita

        8 users

        qiita.com/tkazusa

        カーネルやら何やらを理解するために、非線形計画法を勉強中。 で、その前に線形計画法で実際に手を動かしたくなったので無償で使えるPuLPを使ってみた。 今回例題として解いたのは「これならわかる最適化数学」の第6章、線形計画法。 似たような例題がいくつか並ぶので、ピックアップしてPuLPでモデル化してみた。 【例題6.2】(P161) 2種類の容器A,Bを作るのに, 機械M1,M2を使う. 容器Aを1個作るのにM1を2分, 機械M2を4分使う必要がある.一方,容器Bを1個作るのに、機械M1を8分,機械M2を4分使う必要がある. 容器A,Bを作る利益は一つあたりそれぞれ29円,45円である. 利益を最大にするにはどのように計画すれば良いか. 利益を目的関数f、容器の個数をそれぞれx,yを問いてモデル化すると式は下記のようになる。 制約条件: 2x + 8y <= 60 4x + 4y <= 60

        • テクノロジー
        • 2015/10/26 14:36
        • あとで読む
        • Pythonで実装 PRML 第3章 ベイズ線形回帰 - Qiita

          3 users

          qiita.com/tkazusa

          import numpy as np from numpy.linalg import inv import pandas as pd from pylab import * import matplotlib.pyplot as plt def func(x_train, y_train): # (3.4) Gaussian basis function def phi(s, mu_i, M, x): return np.array([exp(-(x - mu)**2 / (2 * s**2)) for mu in mu_i]).reshape((M, 1)) #(3.53)' ((1.70)) Mean of predictive distribution def m(x, x_train, y_train, S): sum = np.array(zeros((M, 1))) for

          • テクノロジー
          • 2015/09/26 12:28
          • python
          • 10分でPandasを学ぶ - Qiita

            105 users

            qiita.com/tkazusa

            Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?

            • テクノロジー
            • 2015/01/04 20:29
            • pandas
            • python
            • date
            • いつか読む
            • development
            • *あとで

            このページはまだ
            ブックマークされていません

            このページを最初にブックマークしてみませんか?

            『qiita.com』の新着エントリーを見る

            キーボードショートカット一覧

            j次のブックマーク

            k前のブックマーク

            lあとで読む

            eコメント一覧を開く

            oページを開く

            はてなブックマーク

            • 総合
            • 一般
            • 世の中
            • 政治と経済
            • 暮らし
            • 学び
            • テクノロジー
            • エンタメ
            • アニメとゲーム
            • おもしろ
            • アプリ・拡張機能
            • 開発ブログ
            • ヘルプ
            • お問い合わせ
            • ガイドライン
            • 利用規約
            • プライバシーポリシー
            • 利用者情報の外部送信について
            • ガイドライン
            • 利用規約
            • プライバシーポリシー
            • 利用者情報の外部送信について

            公式Twitter

            • 公式アカウント
            • ホットエントリー

            はてなのサービス

            • はてなブログ
            • はてなブログPro
            • 人力検索はてな
            • はてなブログ タグ
            • はてなニュース
            • ソレドコ
            • App Storeからダウンロード
            • Google Playで手に入れよう
            Copyright © 2005-2025 Hatena. All Rights Reserved.
            設定を変更しましたx