サクサク読めて、アプリ限定の機能も多数!
トップへ戻る
参議院選挙2025
zenn.dev/datagrid
データ前処理: 元画像の中央を基準に1:1比率でクロップし、各解像度にリサイズしました。この処理によりアスペクト比の一貫性を保ちつつ、重要な被写体を中心に維持することができました。 効率的なデータパイプライン: WebDatasetフォーマットを採用し、NVIDIA DALIを使用した高速データローディングパイプラインを構築しました。これにより、I/Oボトルネックを最小限に抑え、GPUの稼働率を向上させることができました。 ただし、全解像度のデータを個別に保存する方式を採用したため、ディスク容量の不足や、データ移行に多大な時間を要するなどの課題も生じました。今後の改善点として、最高解像度(1Kや2K)のデータセットのみを保存し、学習時に動的にリサイズする戦略も検討価値があると考えています。 学習過程における特筆すべき観察点 学習過程で以下のような興味深い現象が観察されました: データ品質の
このページを最初にブックマークしてみませんか?
『zenn.dev』の新着エントリーを見る
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く