はじめに 本記事の背景 Retrieval-Augmented Generation(RAG)は、クエリに基づいた情報検索を行い、その結果を基に回答を生成する技術です。これは大規模言語モデル(LLM)の活用法の一つであり、新しい知識や企業文書などに対しても効果的に利用できます。しかし、RAGにはいくつかの課題があり、特に情報の関連付けや意味的理解の不足が精度の低下につながることがあります。 通常のRAGは、主にベクトル類似性を利用して情報を検索します。これは、情報断片の表面的な類似性を評価するものであり、深く複雑な関連性を捉えることが難しいです。また、ベクトル化された情報は独立したエンティティとして扱われるため、文脈や意味的理解を行うことも困難です。このため、期待される情報が引き出せなかったり、不十分な結果を生じることがあります。 Graph RAGとは GraphRAGは、これらの問題に