はてなブックマークアプリ

サクサク読めて、
アプリ限定の機能も多数!

アプリで開く

はてなブックマーク

  • はてなブックマークって?
  • アプリ・拡張の紹介
  • ユーザー登録
  • ログイン
  • Hatena

はてなブックマーク

トップへ戻る

  • 総合
    • 人気
    • 新着
    • IT
    • 最新ガジェット
    • 自然科学
    • 経済・金融
    • おもしろ
    • マンガ
    • ゲーム
    • はてなブログ(総合)
  • 一般
    • 人気
    • 新着
    • 社会ニュース
    • 地域
    • 国際
    • 天気
    • グルメ
    • 映画・音楽
    • スポーツ
    • はてな匿名ダイアリー
    • はてなブログ(一般)
  • 世の中
    • 人気
    • 新着
    • 新型コロナウイルス
    • 働き方
    • 生き方
    • 地域
    • 医療・ヘルス
    • 教育
    • はてな匿名ダイアリー
    • はてなブログ(世の中)
  • 政治と経済
    • 人気
    • 新着
    • 政治
    • 経済・金融
    • 企業
    • 仕事・就職
    • マーケット
    • 国際
    • はてなブログ(政治と経済)
  • 暮らし
    • 人気
    • 新着
    • カルチャー・ライフスタイル
    • ファッション
    • 運動・エクササイズ
    • 結婚・子育て
    • 住まい
    • グルメ
    • 相続
    • はてなブログ(暮らし)
    • 掃除・整理整頓
    • 雑貨
    • 買ってよかったもの
    • 旅行
    • アウトドア
    • 趣味
  • 学び
    • 人気
    • 新着
    • 人文科学
    • 社会科学
    • 自然科学
    • 語学
    • ビジネス・経営学
    • デザイン
    • 法律
    • 本・書評
    • 将棋・囲碁
    • はてなブログ(学び)
  • テクノロジー
    • 人気
    • 新着
    • IT
    • セキュリティ技術
    • はてなブログ(テクノロジー)
    • AI・機械学習
    • プログラミング
    • エンジニア
  • おもしろ
    • 人気
    • 新着
    • まとめ
    • ネタ
    • おもしろ
    • これはすごい
    • かわいい
    • 雑学
    • 癒やし
    • はてなブログ(おもしろ)
  • エンタメ
    • 人気
    • 新着
    • スポーツ
    • 映画
    • 音楽
    • アイドル
    • 芸能
    • お笑い
    • サッカー
    • 話題の動画
    • はてなブログ(エンタメ)
  • アニメとゲーム
    • 人気
    • 新着
    • マンガ
    • Webマンガ
    • ゲーム
    • 任天堂
    • PlayStation
    • アニメ
    • バーチャルYouTuber
    • オタクカルチャー
    • はてなブログ(アニメとゲーム)
    • はてなブログ(ゲーム)
  • おすすめ

    猛暑に注意を

『qiita.com』

  • 人気
  • 新着
  • すべて
  • 効果検証のための因果推論手法のチートシート - Qiita

    81 users

    qiita.com/_jinta

    効果検証においてABテストによる単純比較以上のことをやろうすると、因果推論の各種手法を用いることになります。しかし、因果推論は主義や用語などが統一されておらず、いつ何を使えばいいかが分からないというハードルがあります。 そんな因果推論の手法を整理し、初~中級者にとって学習・活用の見通しが立てやすいようにまとめたものが本記事です。 2023/12/6追記 もともとこの記事は「もう迷わない!効果検証のための因果推論手法のチートシート」というタイトルだったのですが、"迷わない" はどう考えても言い過ぎだったので、タイトルを修正しました。沢山手法があるけど違いが分からなくて混乱しがち、というのが執筆のモチベーションです。むしろ 迷子のお伴 として活用していただけると幸いです。 特にフローチャートの部分は、これに従っておけばOKという主張ではなく、あくまで手法間の関係を整理するためのもの、そしてこう

    • テクノロジー
    • 2023/12/05 13:32
    • 統計
    • あとで読む
    • qiita
    • データ
    • 因果推論
    • データ分析
    • python
    • tips
    • 機械学習アルゴリズムの速度比較 - Qiita

      3 users

      qiita.com/_jinta

      Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 機械学習の各アルゴリズムについての説明はたくさん存在しますが、それらの速度を比較している記事はあまりなさそうだったので、やってみました。 はじめに 「Deepでポン!」や「初手LightGBM」という言葉があります。沢山あるMLアルゴリズムのうち、使い慣れているのは一部だけ…という人も意外といるのではないでしょうか。特徴があるデータや変な制約に直面したときに、それに適した比較的マイナーな手法を試してみたら時間がかかって使い物にならない。そんな悲劇を無くすため、本記事では細かいことは置いておいて大雑把に20のモデルの時間を比較しました。

      • テクノロジー
      • 2023/06/05 07:13
      • 機械学習
      • 【2023年版】Google ColabでSQLを使う【DuckDB, JupySQL】 - Qiita

        6 users

        qiita.com/_jinta

        0. 使うもの JupySQLとDuckDBを使う。 JupySQLは以前紹介したipython-sqlと似たようなライブラリだが、現在あまり更新されていないipython-sqlに対して、(i) バグを修正し、(ii) 機能を追加しているものである。基本的な使い方はipython-sqlと変わらない。 DuckDBはSQLiteのOLAP版という立ち位置らしい。お手軽に使え、分析用途に強いDBだと理解している1。 ということで、実際に簡単に使う方法を見ていく。 1. 諸々準備 !pip install jupysql duckdb-engine # データ(csvファイル)のダウンロード !wget https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv

        • テクノロジー
        • 2023/03/03 12:05
        • python
        • Polarsでデータサイエンス100本ノックを解く(後編) - Qiita

          3 users

          qiita.com/_jinta

          import os import polars as pl import math from sklearn import preprocessing from sklearn import model_selection if not os.path.exists('../data/'): !git clone https://github.com/The-Japan-DataScientist-Society/100knocks-preprocess os.chdir('100knocks-preprocess/docker/work/answer') dtypes = { 'customer_id': str, 'gender_cd': str, 'postal_cd': str, 'application_store_cd': str, 'status_cd': str, 'cat

          • テクノロジー
          • 2023/01/09 00:02
          • Polarsでデータサイエンス100本ノックを解く(前編) - Qiita

            10 users

            qiita.com/_jinta

            import os import polars as pl dtypes = { 'customer_id': str, 'gender_cd': str, 'postal_cd': str, 'application_store_cd': str, 'status_cd': str, 'category_major_cd': str, 'category_medium_cd': str, 'category_small_cd': str, 'product_cd': str, 'store_cd': str, 'prefecture_cd': str, 'tel_no': str, 'postal_cd': str, 'street': str, 'application_date': str, 'birth_day': pl.Date } df_customer = pl.read_c

            • テクノロジー
            • 2023/01/04 23:01
            • data
            • Python
            • 超高速…だけじゃない!Pandasに代えてPolarsを使いたい理由 - Qiita

              100 users

              qiita.com/_jinta

              PolarsというPandasを100倍くらい高性能にしたライブラリがとても良いので布教します1。PolarsはRustベースのDataFrameライブラリですが、本記事ではPythonでのそれについて語ります。 ちなみにpolarsは白熊の意です。そりゃあまあ、白熊と大熊猫比べたら白熊のほうが速いし強いよねってことです2。 何がいいの? 推しポイントは3つあります 高速! お手軽! 書きやすい! 1. 高速 画像はTPCHのBenchmark(紫がPolars)3。 日本語でも色々記事があるので割愛しますが、RustやApach Arrowなどにお世話になっており、非常に速いです。MemoryErrorに悩まされる問題も解決されます。開発者のRitchieがしゃれおつなツイートをしてるので、そちらも参考にどうぞ ↓ 4。 抄訳: (ひとつ目)Pandasは黄色くした部分でDataFram

              • テクノロジー
              • 2022/12/05 12:09
              • pandas
              • Python
              • あとで読む

              このページはまだ
              ブックマークされていません

              このページを最初にブックマークしてみませんか?

              『qiita.com』の新着エントリーを見る

              キーボードショートカット一覧

              j次のブックマーク

              k前のブックマーク

              lあとで読む

              eコメント一覧を開く

              oページを開く

              はてなブックマーク

              • 総合
              • 一般
              • 世の中
              • 政治と経済
              • 暮らし
              • 学び
              • テクノロジー
              • エンタメ
              • アニメとゲーム
              • おもしろ
              • アプリ・拡張機能
              • 開発ブログ
              • ヘルプ
              • お問い合わせ
              • ガイドライン
              • 利用規約
              • プライバシーポリシー
              • 利用者情報の外部送信について
              • ガイドライン
              • 利用規約
              • プライバシーポリシー
              • 利用者情報の外部送信について

              公式Twitter

              • 公式アカウント
              • ホットエントリー

              はてなのサービス

              • はてなブログ
              • はてなブログPro
              • 人力検索はてな
              • はてなブログ タグ
              • はてなニュース
              • ソレドコ
              • App Storeからダウンロード
              • Google Playで手に入れよう
              Copyright © 2005-2025 Hatena. All Rights Reserved.
              設定を変更しましたx