はてなブックマークアプリ

サクサク読めて、
アプリ限定の機能も多数!

アプリで開く

はてなブックマーク

  • はてなブックマークって?
  • アプリ・拡張の紹介
  • ユーザー登録
  • ログイン
  • Hatena

はてなブックマーク

トップへ戻る

  • 総合
    • 人気
    • 新着
    • IT
    • 最新ガジェット
    • 自然科学
    • 経済・金融
    • おもしろ
    • マンガ
    • ゲーム
    • はてなブログ(総合)
  • 一般
    • 人気
    • 新着
    • 社会ニュース
    • 地域
    • 国際
    • 天気
    • グルメ
    • 映画・音楽
    • スポーツ
    • はてな匿名ダイアリー
    • はてなブログ(一般)
  • 世の中
    • 人気
    • 新着
    • 新型コロナウイルス
    • 働き方
    • 生き方
    • 地域
    • 医療・ヘルス
    • 教育
    • はてな匿名ダイアリー
    • はてなブログ(世の中)
  • 政治と経済
    • 人気
    • 新着
    • 政治
    • 経済・金融
    • 企業
    • 仕事・就職
    • マーケット
    • 国際
    • はてなブログ(政治と経済)
  • 暮らし
    • 人気
    • 新着
    • カルチャー・ライフスタイル
    • ファッション
    • 運動・エクササイズ
    • 結婚・子育て
    • 住まい
    • グルメ
    • 相続
    • はてなブログ(暮らし)
    • 掃除・整理整頓
    • 雑貨
    • 買ってよかったもの
    • 旅行
    • アウトドア
    • 趣味
  • 学び
    • 人気
    • 新着
    • 人文科学
    • 社会科学
    • 自然科学
    • 語学
    • ビジネス・経営学
    • デザイン
    • 法律
    • 本・書評
    • 将棋・囲碁
    • はてなブログ(学び)
  • テクノロジー
    • 人気
    • 新着
    • IT
    • セキュリティ技術
    • はてなブログ(テクノロジー)
    • AI・機械学習
    • プログラミング
    • エンジニア
  • おもしろ
    • 人気
    • 新着
    • まとめ
    • ネタ
    • おもしろ
    • これはすごい
    • かわいい
    • 雑学
    • 癒やし
    • はてなブログ(おもしろ)
  • エンタメ
    • 人気
    • 新着
    • スポーツ
    • 映画
    • 音楽
    • アイドル
    • 芸能
    • お笑い
    • サッカー
    • 話題の動画
    • はてなブログ(エンタメ)
  • アニメとゲーム
    • 人気
    • 新着
    • マンガ
    • Webマンガ
    • ゲーム
    • 任天堂
    • PlayStation
    • アニメ
    • バーチャルYouTuber
    • オタクカルチャー
    • はてなブログ(アニメとゲーム)
    • はてなブログ(ゲーム)
  • おすすめ

    WWDC25

『qiita.com』

  • 人気
  • 新着
  • すべて
  • 近年の本格ミステリを可視化する【テキストマイニング】 - Qiita

    5 users

    qiita.com/masaka_programming

    はじめに 本記事では、Pythonによるテキストマイニングの簡単なチュートリアルとして、ここ8年ほどの間に刊行された「本格ミステリ」に分類される小説のキーワードを解析し、可視化することを目指します。 使用するデータ 出版書誌情報データベース(Books)において、検索キーワードを「本格ミステリ」に設定し、ヒットした書誌の内容紹介からあらすじに相当する部分をExcelに手作業で(!)切り貼りすることで、本格推理小説505作のあらすじをまとめました。 実装 あらすじから内容を象徴するようなキーワードを抽出し、その出現の頻度や関係を可視化することで分析を行います。なお、添付したコードはGoogle Colaboratoryでの実行を想定しています。 必要なライブラリのインストール 形態素解析(文から単語を切り出し、品詞等の判別を行うこと)にはPythonの言語処理ツールであるGiNZAを、解析結

    • テクノロジー
    • 2022/09/11 18:03
    • あとで読む
    • Stable Diffusionによる画像生成をGoogle Colaboratoryで実行する - Qiita

      5 users

      qiita.com/masaka_programming

      この記事について 最近オープンソースで公開され話題のStable DiffusionをGoogle Colaboratory上で実行するまでの流れをまとめました。Stable Diffusionは任意のテキスト入力に対して写真のようなリアルな画像を出力するtext-to-imageのモデルです。これはDiffusion Modelという非平衡熱力学から発想を得た生成モデルの一種に基づいており、LAION-5Bという大規模なデータベースを活用して訓練を行ったものです。今回は、主に自然言語処理を対象にした大規模なオープンソースコミュニティーであるHugging Faceより訓練済みモデルをダウンロードします。 Hugging Faceへの登録 まずhttps://huggingface.co/よりHugging Faceにサインインする必要があります。 登録を終えたら「Settings > A

      • テクノロジー
      • 2022/08/24 16:07
      • CG
      • 人工知能
      • 素材
      • アート
      • google
      • リザバーコンピューティング概観 - Qiita

        4 users

        qiita.com/masaka_programming

        Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? リザバーコンピューティングとは みなさんは「リザバーコンピューティング」という技術を耳にしたことがあるでしょうか。 リザバーコンピューティングとは時系列パターン認識に適した機械学習手法の一つであり、以下のような構成をもつニューラルネットワークです。 通常のニューラルネットワークと同様、多次元のベクトルを入力とし、出力されるベクトルが目標のベクトルに近づくように学習を行います。逐次的に入力される時系列データの情報を再帰的な結合を持つリザバー部が記憶し、その内部状態を出力層で読み取る(リードアウト)ことで時系列性を活かした回帰・分類が可能と

        • テクノロジー
        • 2022/07/27 23:04
        • ポケモンの最強タイプを考える【グラフ理論】 - Qiita

          415 users

          qiita.com/masaka_programming

          導入 先日、ポケモンの最新作『Pokémon LEGENDS アルセウス』が発売されました。ポケモン愛好家の中で密かに話題を集めたのが、新たに登場したポケモン「ゾロア(ヒスイのすがた)」と「ゾロアーク(ヒスイの姿)」のタイプです。なんと驚くべきことに、両者のタイプは未だ登場したことのなかった「ノーマル・ゴースト」だったのです。 ポケモンを知る人には説明不要ですが、これはノーマルタイプの唯一の弱点であるかくとう技をゴーストタイプで無効化しながら、ゴーストタイプの弱点であるゴースト技をノーマルタイプで無効化するという、非常にバランスのとれた、まさに夢のような複合タイプです。一部では、この「ノーマル・ゴースト」こそ最強の組み合わせなのではないかと噂されました。 しかし、果たして本当にそうなのでしょうか? ポケモンのタイプは全部で18種類あり、一匹のポケモンは二つまでタイプを持つことができます。考

          • アニメとゲーム
          • 2022/02/06 19:02
          • アルゴリズム
          • 数学
          • ポケモン
          • あとで読む
          • game
          • グラフ
          • qiita
          • ゲーム
          • pokemon
          • 読み物
          • コウメ太夫氏のネタの面白さを分析してみた【自然言語処理】 - Qiita

            13 users

            qiita.com/masaka_programming

            やること 一世を風靡したお笑い芸人、コウメ太夫氏のネタは、白塗りメイクと派手な着物に身を包み、甲高い裏声で「Xかと思ったら、Yでした〜!」と歌い上げてから、絹を裂くような金切り声で「チクショー!」と叫ぶというものです。その面白さを言葉によって説明するのは極めて難しいですが、「Xかと思った」という前振りの文Aと、「Yでした」というオチの文Bの接続の突拍子のなさが可笑しみを生み出しているというのは間違いないでしょう。しかし、ただ脈略のない二文を繋げればよいというわけではなく、理解不能ではあるけれどまるで無関連というわけではない、その飛躍具合の妙でネタの出来が決まると考えられます。 そこで、今回はコウメ太夫氏のネタを構成する二つの文の飛躍の程度を定量化し、ネタの面白さにどのような関係があるかを分析します。 文の意味を捉えるために、自然言語処理モデルであるBERTを使います。また、ネタの面白さの指

            • テクノロジー
            • 2022/01/26 18:04
            • 自然言語処理
            • データ
            • ネタ
            • あとで読む

            このページはまだ
            ブックマークされていません

            このページを最初にブックマークしてみませんか?

            『qiita.com』の新着エントリーを見る

            キーボードショートカット一覧

            j次のブックマーク

            k前のブックマーク

            lあとで読む

            eコメント一覧を開く

            oページを開く

            はてなブックマーク

            • 総合
            • 一般
            • 世の中
            • 政治と経済
            • 暮らし
            • 学び
            • テクノロジー
            • エンタメ
            • アニメとゲーム
            • おもしろ
            • アプリ・拡張機能
            • 開発ブログ
            • ヘルプ
            • お問い合わせ
            • ガイドライン
            • 利用規約
            • プライバシーポリシー
            • 利用者情報の外部送信について
            • ガイドライン
            • 利用規約
            • プライバシーポリシー
            • 利用者情報の外部送信について

            公式Twitter

            • 公式アカウント
            • ホットエントリー

            はてなのサービス

            • はてなブログ
            • はてなブログPro
            • 人力検索はてな
            • はてなブログ タグ
            • はてなニュース
            • ソレドコ
            • App Storeからダウンロード
            • Google Playで手に入れよう
            Copyright © 2005-2025 Hatena. All Rights Reserved.
            設定を変更しましたx