# day_embedding: np.ndarray tsne = TSNE(n_components=2, random_state=42) day_embedding_2d = tsne.fit_transform(day_embedding) plt.figure(figsize=(12, 8)) plt.scatter( day_embedding_2d[:, 0], day_embedding_2d[:, 1], c=np.arange(day_embedding.shape[0]), cmap='viridis' ) plt.colorbar(label='Day Index') plt.title('t-SNE Visualization of Day Embeddings') plt.xlabel('t-SNE Component 1') plt.ylabel('t-SN