はてなブックマーク

  • はてなブックマークって?
  • アプリ・拡張の紹介
  • ユーザー登録
  • ログイン
  • Hatena

はてなブックマーク

トップへ戻る

  • 総合
    • 人気
    • 新着
    • 国内
    • 国際
    • 経済・金融
    • IT
    • 社会
    • 文化
    • 事件・事故
    • はてなブログ(総合)
  • 一般
    • 人気
    • 新着
    • 今日の出来事
    • 生活
    • グルメ
    • 新型コロナウイルス
    • 今後の「働き方」
    • 夏の風物詩
    • ビジネス・経営
    • 雑学
    • 将棋・囲碁
  • 世の中
    • 人気
    • 新着
    • 新型コロナウイルス
    • 働き方
    • 生き方
    • 地域
    • 医療・ヘルス
    • 教育
    • 恋愛
    • はてな匿名ダイアリー
  • 政治と経済
    • 人気
    • 新着
    • 政治
    • 経済・金融
    • 企業
    • 仕事・就職
    • マーケット
    • はてなブログ(政治と経済)
  • 暮らし
    • 人気
    • 新着
    • カルチャー・ライフスタイル
    • ファッション
    • 運動・エクササイズ
    • 結婚・子育て
    • 住まい
    • グルメ
    • お金
    • はてなブログ(暮らし)
    • 掃除・整理整頓
    • 雑貨
    • 買ってよかったもの
    • 旅行
    • 趣味
  • 学び
    • 人気
    • 新着
    • 人文科学
    • 社会科学
    • 自然科学
    • 英語
    • ビジネス・経営
    • デザイン
    • 法律
  • テクノロジー
    • 人気
    • 新着
    • IT
    • セキュリティ技術
    • はてなブログ(テクノロジー)
    • AI・機械学習
    • プログラミング
    • エンジニア
  • おもしろ
    • 人気
    • 新着
    • まとめ
    • ネタ
    • おもしろ
    • これはすごい
    • かわいい
    • 雑学
  • エンタメ
    • 人気
    • 新着
    • スポーツ
    • 映画
    • 音楽
    • アイドル
    • 芸能
    • サッカー
    • 将棋・囲碁
  • アニメとゲーム
    • 人気
    • 新着
    • マンガ
    • Webマンガ
    • ゲーム
    • 任天堂
    • PlayStation
    • アニメ
    • バーチャルYouTuber
    • オタクカルチャー
  • おすすめ

    カレーが食べたい

『dajiro.com』

  • 人気
  • 新着
  • すべて
  • 【Graph Attention Networks解説】実装から読み解くGAT - ころがる狸

    3 users

    dajiro.com

    こんにちは。機械学習の適用先としては、自然言語処理、画像解析、時系列解析など幅広い分野があるわけですが、今日はグラフ構造に対する機械学習モデルを紹介したいと思います。グラフで表現出るものは多く、例えば人間関係だとか、論文の引用・被引用関係、さらには化合物の構造なども当てはまります。近年のグラフニューラルネットワークの多くはグラフの頂点や辺を何らかの特徴量で表現し、それらを周囲の情報を取り込みながら更新していくという仕組みを取っています。数多くの事例が報告されていますが、特に注目されているGraph Attention Networks(GAT)について取り上げます。 原著論文はこちら。これを理解するための鍵は、グラフの頂点を表す特徴量をどのように更新するか、そしてグラフの頂点と頂点の「つながり」の重要度をどのように計算するか、という2点にあると思います。 arxiv.org Graph A

    • テクノロジー
    • 2020/12/13 11:50
    • graph
    • 【自然言語処理】単語埋め込みからSelf-Attention、2値分類まで。 - ころがる狸

      4 users

      dajiro.com

      こんにちは、Dajiroです。前回の技術記事を書いてからだいぶ日が空きました。本ブログでは機械学習に関する幅広い技術を解説しようと目論んでいるので、まだ扱ったことのない自然言語処理のネタををじっくりコトコト仕込んでいました。本記事では 単語埋め込み 語順の組み込み Self-Attention に焦点を当てながら、2値分類の一連のワークフローの解説と(若干の)実装をご紹介します!実装はこちらの書籍を参考にしました。2値分類を行うためのTransformerのエンコーダ部分が紹介されています。 つくりながら学ぶ!PyTorchによる発展ディープラーニング 作者:小川 雄太郎発売日: 2019/07/29メディア: Kindle版 Transformerとは? 仕組みの概要 全体の流れ 1. 文章のベクトル化 2. 語順情報を追加 3.アテンションの計算 二値分類と結果の解釈 所感 Trans

      • テクノロジー
      • 2020/06/28 11:57

      このページはまだ
      ブックマークされていません

      このページを最初にブックマークしてみませんか?

      『dajiro.com』の新着エントリーを見る

      キーボードショートカット一覧

      j次のブックマーク

      k前のブックマーク

      lあとで読む

      eコメント一覧を開く

      oページを開く

      はてなブックマーク

      • 総合
      • 一般
      • 世の中
      • 政治と経済
      • 暮らし
      • 学び
      • テクノロジー
      • エンタメ
      • アニメとゲーム
      • おもしろ
      • アプリ・拡張機能
      • 開発ブログ
      • ヘルプ
      • お問い合わせ
      • 公式Twitter
      • ホットエントリー

      はてなのサービス

      • はてなブログ
      • はてなブログPro
      • 人力検索はてな
      • はてなブログ タグ
      • はてなニュース
      • App Storeからダウンロード
      • Google Playで手に入れよう
      Copyright © 2005–2022 Hatena. All Rights Reserved.
      設定を変更しましたx